欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡

你的位置:首頁 > 電源管理 > 正文

剖析逆變器--優化光伏發電的裝置

發布時間:2011-10-05

逆變器的中心議題:

  • 太陽能對逆變器的要求
  • 太陽能逆變器的原理及架構
  • 太陽能逆變器的智能控制


相關閱讀:
太陽能逆變器設計的最新趨勢
http://www.empresariosaem.com/art/artinfo/id/80013883
如何正確地為太陽能逆變器應用選擇IGBT
http://www.empresariosaem.com/art/artinfo/id/80013131
基于改進型全橋電路的非隔離光伏并網逆變器
http://www.empresariosaem.com/art/artinfo/id/80012770

發展逆變器技術是太陽能應用提出的要求,本文介紹了太陽能逆變器的原理及架構,著重介紹了IGBT和MOSFET技術,實現智能控制是發展太陽能逆變器技術的關鍵。

一、太陽能對逆變器的要求

通過太陽能光伏技術將太陽輻射轉換成電能是現在市面上最有效也是最具發展潛力的可再生能源技術。現在,普通太陽能光伏系統都是由許多緊密相連的太陽能電池板組成。這些電池板先分組串聯,再將不同的串聯電池組并聯起來形成電池陣列。

目前我國光伏發電系統主要是直流系統,即將太陽電池發出的電能給蓄電池充電,而蓄電池直接給負載供電,如我國西北地區使用較多的太陽能戶用照明系統以及遠離電網的微波站供電系統均為直流系統。此類系統結構簡單,成本低廉,但由于負載直流電壓的不同(如12V、24V、48V等),很難實現系統的標準化和兼容性,特別是民用電力,由于大多為交流負載,以直流電力供電的光伏電源很難作為商品進入市場。光伏發電最終將實現并網運行,這就必須采用成熟的市場模式,今后交流光伏發電系統必將成為光伏發電的主流。

太陽能逆變器是一種功率電子電路,能把太陽能電池板的直流電壓轉換為交流電壓來驅動家用電器、照明及電機工具等交流負載,是整個太陽能發電系統的關鍵組件。逆變器有兩個基本功能:一方面是為完成DC/AC轉換的電流連接到電網,另一方面是找出最佳的操作點以優化太陽能光伏系統的效率。對于特定的太陽光輻射、溫度及電池類型,太陽能光伏系統都相應有唯一的最佳電壓及電流,從而使光伏系統產生最大的能量。因此,在太陽能應用中對逆變器必須滿足以下基本要求:

1.要求具有較高的效率。由于目前太陽電池的價格偏高,為了最大限度地利用太陽電池,提高系統效率,必須設法提高逆變器的效率。

2.要求具有較高的可靠性。目前光伏發電系統主要用于邊遠地區,許多電站無人值守和維護,這就要求逆變器具有合理的電路結構,嚴格的元器件篩選,并要求逆變器具備各種保護功能,如輸入直流極性接反保護,交流輸出短路保護,過熱、過載保護等。

3.要求直流輸入電壓有較寬的適應范圍,由于太陽電池的端電壓隨負載和日照強度而變化,蓄電池雖然對太陽電池的電壓具有重要作用,但由于蓄電池的電壓隨蓄電池剩余容量和內阻的變化而波動,特別是當蓄電池老化時其端電壓的變化范圍很大,如12V蓄電池,其端電壓可在10V~16V之間變化,這就要求逆變器必須在較大的直流輸入電壓范圍內保證正常工作,并保證交流輸出電壓的穩定。

4.在中、大容量的光伏發電系統中,逆變電源的輸出應為失真度較小的正弦波。這是由于在中、大容量系統中,若采用方波供電,則輸出將含有較多的諧波分量,高次諧波將產生附加損耗,許多光伏發電系統的負載為通信或儀表設備,這些設備對電網品質有較高的要求,當中、大容量的光伏發電系統并網運行時,為避免與公共電網的電力污染,也要求逆變器輸出正弦波電流。

二、太陽能逆變器的原理及架構

通常把交流電能變換成直流電能的過程稱之為整流,相控整流是最常見的交-直流變換過程;而把直流電能變換成交流電能的過程稱之為逆變,它是整流的逆過程。在逆變電路中,按照負載性質的不同,逆變分為有源逆變和無源逆變。如果把該電路的交流側接到交流電源上,把直流電能經過直-交流變換,逆變成與交流電源同頻率的交流電返送到電網上去,稱作有源逆變。相應的裝置稱為有源逆變器,控制角大于90°的相控整流器為常見的有源逆變器。而把直流電能變換為交流電能,直接向非電源負載供電的電路,稱之為無源逆變電路,又稱為變頻器。

逆變器類型有他勵逆變器、自勵逆變器、脈寬調制(PWM)型逆變器。其中他勵逆變器需要外部交流電壓源,給晶閘管提供整流電壓。他勵逆變器主要應用在大功率并網情況下;對于功率低于1MW 的光伏發電系統,主要采用自勵逆變器方式。自勵逆變器不需要外部交流電壓源,整流電壓由逆變器的一部分儲能元件(比如電容)來提供或者通過增加待關斷整流閥(像MOSFET 或IGBT)的電阻值來實現。輸出電壓被脈沖調制的自勵逆變器被稱為脈沖逆變器。這種逆變器通過增加周期內脈沖的切換次數,來降低電壓、電流的諧波含量;諧波含量與脈沖切換次數呈正比。目前,并網逆變器的輸出控制模式主要有兩種:電壓型控制模式和電流型控制模式。電壓型控制模式的原理是以輸出電壓作為受控量,系統輸出和電網電壓同頻同相的電壓信號,整個系統相當于一個內阻很小的受控電壓源;電流型控制模式的原理則是以輸出電感電流作為受控目標,系統輸出和電網電壓同頻同相的電流信號,整個系統相當于一個內阻較大的受控電流源。

目前,太陽能逆變器已有多種拓撲結構,最常見的是用于單相的半橋、全橋和Heric(Sunways專利)逆變器,以及用于三相的六脈沖橋和中點鉗位(NPC)逆變器。太陽能逆變器的典型架構一般采用四個開關的全橋拓撲,如圖1所示。

全橋拓撲示意圖
在圖1中, Q1 和Q3被指定為高壓側IGBT,Q2 和Q4 則是低壓側 IGBT。該逆變器用于在其目標市場的頻率和電壓條件下,產生單相位正弦電壓波形。有些逆變器用于連接凈計量效益電網的住宅安裝,這就是其中一個目標應用市場,此項應用要求逆變器提供低諧波交流正弦電壓,讓力可注入電網中。 實質上,為保持諧波分量低和功率損耗最小,逆變器的高壓端IGBT采用脈寬調制(PWM),低壓端IGBT則以60Hz頻率變換電流方向。通過讓高壓端 IGBT使用20kHz或20kHz以上的PWM頻率和50/60Hz調制方案,輸出電感L1和L2在實例中可以做得很小,并且照樣能對諧波分量進行高效濾波。與快速和標準速度的平面器件相比,開關速度為20kHz的超快速溝道型IGBT可以提供最低的總導通損耗和開關功率損耗。同樣,對于低壓端開關電路,工作在60Hz的標準速度IGBT可以提供最低的功率損耗。
[page]
這個設計中的開關技術具有如下優勢:通過允許高壓端和低壓端IGBT獨立優化實現很高的效率;高壓端、同封裝的軟恢復二極管沒有續流時間,從而消除了不必要的開關損耗;低壓端IGBT的開關頻率只有60Hz,因此導通損耗是這些IGBT的主要因素;沒有交叉導通,因為任何時間點的開關都發生在對角的兩個器件上(Q1和Q4或Q2和Q3);不存在總線直通的可能性,因為橋的同一邊上的IGBT永遠不可能以互補方式開關;跨接低壓端IGBT的同封裝、超快速、軟恢復二極管經過優化可以使續流和反向恢復期間的損耗達到最小。

三、IGBT抑或MOSFET

在太陽能轉換過程中,有各種先進的功率器件可以使用,比如MOSFET、雙極結晶體管(BJT)和IGBT。為取得最佳的轉換效率和性能,為太陽能逆變器選擇正確的功率晶體管極具挑戰性,而且非常耗時。

多年來的研究表明,IGBT可以比其它功率器件提供更多的優勢,其中包括更強的電流處理能力、用電壓(而不是電流)方便地實現柵極控制,以及在封裝內集成超快速恢復二極管實現更快的關斷時間。 IGBT是一種少數載流子器件,它的關斷時間取決于少數載流子重新組合的速度,因此,隨著最近工藝技術和器件結構的改進,它的開關特性已得到顯著增強。

IGBT基本上是具備金屬門氧化物門結構的雙極型晶體管 (BJT) 。這種設計讓IGBT的柵極可以像MOSFET一樣,以電壓代替電流來控制開關。作為一種BJT,IGBT的電流處理能力比MOSFET更高。同時,IGBT亦如BJT一樣是一種少數載體元件。這意味著IGBT關閉的速度是由少數載體復合的速度快慢來決定。此外,IGBT的關閉時間與它的集極-射極飽和電壓 (Vce(on)) 成反比(如圖2所示)。

關閉時間與V成反比
以圖2為例,若IGBT擁有相同的體積和技術,一個超速IGBT比一個標準速度的IGBT擁有更高的Vce(on)。然而,超速IGBT的關閉速度卻比標準IGBT快得多。圖2反映的這種關系,是通過控制IGBT的少數載體復合率的使用周期以影響關閉時間來實現的。

一般說,因IGBT的電流更大(是MOSFET的兩倍多),所以采用IGBT方案的成本比采用MOSFET的成本低。除成本方面的考慮外,器件性能可由功率損耗表度,而功率損耗可分為:導通和開關兩類。作為以少數載流子為基礎的器件,在大電流下,IGBT具有更低的導通電壓,也就意味著更低的導通損耗。但MOSFET的開關速度更快,所以開關損耗比IGBT低。因此對于要求更低開關頻率且更大電流的應用來說,選擇IGBT更為適合而且具備更低成本優勢。另一方面,MOSFET有能力滿足高頻、小電流應用,特別是那些開關頻率在100kHz以上的能量逆變器模塊的需要。雖然從器件成本角度看,MOSFET比IGBT貴,但其處理更高開關頻率的能力將簡化輸出濾波器的磁設計并將顯著縮小輸出電感體積。 基于上述原因,更多的制造商因此傾向于在中高水平的能量逆變器中采用IGBT。而據Microsemi公司介紹,該公司生產的MOS8 IGBT在靜態和動態測試(最小化的總體功率損耗)方面的優化性能可出色勝任這些應用的要求。另一方面,即便MOSFET的成本是個主要考量,但為實行一個更優方案,也應重新審視采用MOSFET的潛力,諸如Microsemi的MOS7/MOS8 MOSFET所具備的領先特性就非常適合太陽能逆變器的設計。

四、太陽能逆變器的智能控制

設計太陽能逆變器時要考慮的兩個關鍵因素是效率和諧波失真。效率可分成兩個部分:太陽能的效率和逆變器的效率。逆變器的效率在很大程度上取決于設計使用的外部元件,而不是控制器;而太陽能的效率與控制器如何控制太陽能電池板陣列有關。每個太陽能電池板陣列的最大工作功率在很大程度上取決于陣列的溫度和光照。MCU必須控制太陽能電池板陣列的輸出負載,以使陣列的工作功率最大。由于這不是一個數學密集型算法,因此可使用低成本MCU來完成任務。

目前,大多數太陽能逆變器只能從太陽能電池板的某個最佳位置對電池板的整體效率進行優化。這種優化方法嚴重制約了太陽能發電系統的效率。如果光伏系統在非最佳電壓及電流水平下運行,系統的效率就非常低,白白浪費采集太陽能的良機。在光伏系統中,太陽能電池板是由多個串聯組并聯后形成的。就像節日燈飾一樣,假如串聯中的任何某個電池發生故障,就會導致整個電池組失效。此外,當有局部陰影或碎礫等遮蔽光伏系統時,這種情況也會發生。

為了解決上述問題,目前太陽能電池板都集成了旁路二極管,從而使電流可以繞過被遮蔽的失效電池板部份。啟動二極管后,它們可將電流重新路由,即改道繞過失效電池串上。這樣一來,不僅浪費了受遮蔽電池板的供電潛能,而且會降低整個電池組的總電壓。基于選取電池板最佳操作點的原則,逆變器必須決定是應該優化受影響電池串的電壓,還是應該優化其他沒受影響電池組所產生的能量。在大多數的情況下,逆變器都會選擇優化沒有影響的電池組,并相應地降低受影響電池組所產生的能量,甚至是完全關閉受影響電池組。所導致的結果是,太陽能光伏系統只要出現10%的遮蔽,便會使太陽能發電量下降一半。產生這一現象的原因主要是現行的光伏系統并不能與極度敏感的太陽能電池架構相匹配。因此,我們需要采用更高智能的技術和產品來開發太陽能。

為此,美國國家半導體新推出的Solar Magic產品,能夠智能管理太陽能光伏(PV)電池板電量,從而使太陽能管理更智能,更高效。一個解決方案就是所謂的“微型逆變器”,即在每塊電池板上都加裝逆變器。可是,影響光伏系統的關鍵因素是可靠性、成本和效率。先進的微型優化器技術可大幅改善太陽能發電工業的成本效益和產能。由于具備在太陽能發電的深厚知識、經驗以及可靠的核心技術,美國國家半導體的Solar Magic技術可監察并優化每塊電池板的發電量,并改善電池板中的電流流向。Solar Magic體現了美國國家半導體在混合信號和電源管理的先進算法領域的領先。通過采用Solar Magic技術,太陽能發電系統可挽回50%以上因輸電失配或陰影遮蔽而損失的發電量。微型優化器將智能地管理每塊電池板,讓它們可以最佳的功率點去運行,即使串聯電池組內有個別電池板發生故障也不會影響系統的整體效率。美國國家半導體于2009年推出的全新微型優化器將推動太陽能光伏技術的發展,在再生能源方面扮演舉足輕重的角色。

要采購開關么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡
精品国产污网站| 在线不卡中文字幕| 中文字幕制服丝袜成人av| 国产成人av一区二区| 日韩一区二区免费在线电影| 麻豆国产精品一区二区三区| 日韩欧美黄色影院| 国模娜娜一区二区三区| 国产精品人人做人人爽人人添| 91免费观看国产| 亚洲综合在线五月| 7777精品伊人久久久大香线蕉的 | 国产一区二区美女| 中文字幕第一区综合| 91玉足脚交白嫩脚丫在线播放| 亚洲综合男人的天堂| 欧美三级在线视频| 中文字幕在线不卡一区二区三区| 欧美在线短视频| 男女性色大片免费观看一区二区 | 亚洲不卡在线观看| 日韩午夜激情视频| 国产精品一二三四| 亚洲乱码中文字幕| 欧美丰满一区二区免费视频 | 欧美人伦禁忌dvd放荡欲情| 婷婷一区二区三区| 欧美精品一区二区三区蜜桃| 成人av免费观看| 调教+趴+乳夹+国产+精品| 久久久美女毛片| 欧洲国内综合视频| 精品一区二区在线观看| 亚洲人亚洲人成电影网站色| 91精品国产一区二区人妖| 久久99国内精品| 亚洲精品视频在线看| 欧美日韩中文字幕一区二区| 韩国成人精品a∨在线观看| 久久久久久久综合色一本| 日本久久精品电影| 日本不卡一区二区三区| 91精品国产麻豆国产自产在线 | 国产欧美精品区一区二区三区| 色婷婷精品大在线视频| 另类专区欧美蜜桃臀第一页| 亚洲欧美偷拍三级| 欧美日韩国产大片| 国产制服丝袜一区| 中文字幕中文字幕一区二区| 欧美精品一级二级| 成人黄色综合网站| 日韩国产精品91| 亚洲人亚洲人成电影网站色| 久久综合成人精品亚洲另类欧美| 91在线视频官网| 久久精品72免费观看| 精品久久久久99| 欧美亚洲图片小说| 国产成人综合在线观看| 午夜影院久久久| 国产色产综合产在线视频| 91精品国产综合久久福利| 国产视频一区在线播放| 日韩国产欧美三级| 亚洲一区在线看| 日韩欧美美女一区二区三区| 91在线视频官网| 国产精品亚洲视频| 美女高潮久久久| 亚洲国产日韩一级| 久久久久国产精品麻豆| 在线观看av不卡| 狠狠色丁香婷婷综合| 亚洲成av人片在线观看| 欧美国产亚洲另类动漫| 欧美人牲a欧美精品| 91久久免费观看| 蜜桃精品视频在线观看| 亚洲国产成人高清精品| 欧美xxx久久| 99麻豆久久久国产精品免费| 九九在线精品视频| 亚洲自拍都市欧美小说| 亚洲视频在线观看三级| 国产三级一区二区| 2017欧美狠狠色| 欧美日韩一区不卡| 99国产精品久久久久久久久久久| 国产成人亚洲综合a∨婷婷| 麻豆一区二区三| 婷婷久久综合九色综合伊人色| 国产校园另类小说区| 欧美成人综合网站| 日韩精品一区国产麻豆| 欧美一二三区在线观看| 777亚洲妇女| 欧美伊人精品成人久久综合97| 久久91精品国产91久久小草| 奇米色一区二区三区四区| 亚洲国产精品尤物yw在线观看| 久久综合色8888| 欧美日韩在线观看一区二区| 亚洲国产日韩综合久久精品| 亚洲国产精品久久艾草纯爱| 无码av免费一区二区三区试看| 午夜视频在线观看一区二区 | 91精品国产综合久久久蜜臀粉嫩| 成人性生交大片免费看视频在线| 国内精品国产成人| 国产精品 日产精品 欧美精品| 国内精品视频一区二区三区八戒| 国产精一品亚洲二区在线视频| 国产成人亚洲综合a∨猫咪| 成人黄色av电影| 99精品久久只有精品| gogo大胆日本视频一区| 9i看片成人免费高清| av日韩在线网站| 麻豆91精品视频| 经典三级一区二区| 久久激五月天综合精品| 国产成人aaa| 99re8在线精品视频免费播放| 91视频一区二区| 欧美日韩一区视频| 欧美久久久久久久久中文字幕| 欧美日韩中文字幕一区二区| 日韩亚洲国产中文字幕欧美| 欧美精品久久久久久久多人混战| 欧美一级午夜免费电影| 欧美日本一区二区三区四区| 欧美精品777| 99国产欧美另类久久久精品| 欧美老肥妇做.爰bbww| 亚洲精品一区二区三区蜜桃下载| 国产精品天美传媒| 色噜噜久久综合| 国内精品伊人久久久久av影院| 成人理论电影网| 欧美色大人视频| 久久一日本道色综合| 国产精品另类一区| 亚洲国产精品久久久久婷婷884 | 香蕉影视欧美成人| 国产一区二区三区蝌蚪| 不卡视频免费播放| 在线观看三级视频欧美| 国产一区福利在线| 国产一区 二区 三区一级| 成人高清免费观看| 欧美在线啊v一区| 91精品国产色综合久久久蜜香臀| 日韩欧美在线123| 欧美理论片在线| 亚洲国产精品99久久久久久久久| 国产精品女同互慰在线看| 中文字幕一区二区5566日韩| 亚洲va欧美va人人爽午夜| 国产乱码精品一区二区三 | 亚洲精品一区二区三区福利 | 婷婷国产在线综合| 丁香一区二区三区| 日本国产一区二区| 久久亚洲影视婷婷| 亚洲一区二区在线免费观看视频| 国内精品嫩模私拍在线| 欧洲国产伦久久久久久久| 久久精品免视看| 亚洲一区在线免费观看| 国产ts人妖一区二区| 欧美人体做爰大胆视频| 国产精品久久毛片a| 亚洲人成在线播放网站岛国| 久久99深爱久久99精品| 99re在线视频这里只有精品| 一本久久a久久免费精品不卡| 91精品国产综合久久国产大片| 国产精品麻豆视频| 亚洲午夜精品在线| 韩日精品视频一区| 在线看日本不卡| 国产精品婷婷午夜在线观看| 老司机精品视频导航| 91成人看片片| 欧美激情综合五月色丁香| 首页综合国产亚洲丝袜| 99在线视频精品| 欧美一级理论片| 亚洲精品中文字幕乱码三区| 精品伊人久久久久7777人| 欧美日韩免费电影| 国产精品二区一区二区aⅴ污介绍| 亚洲免费观看高清完整| 国产精品99精品久久免费| 日韩一区二区电影| 亚洲另类色综合网站| 国产成人免费在线观看| 欧美日韩极品在线观看一区| 欧美激情一区不卡|