欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡

你的位置:首頁 > 電源管理 > 正文

電源的緩啟動電路設計及原理 (諾基亞西門子版本)

發布時間:2019-08-01 責任編輯:wenwei

【導讀】在電信工業和微波電路設計領域,普遍使用MOS管控制沖擊電流的方達到電流緩啟動的目的。MOS管有導通阻抗Rds_on低和驅動簡單的特點,在周圍加上少量元器件就可以構成緩慢啟動電路。雖然電路比較簡單,但只有吃透MOS管的相關開關特性后才能對這個電路有深入的理解。
 
電源的緩啟動電路設計及原理 (諾基亞西門子版本)
 
本文首先從MOSFET的開通過程進行敘述:
 
盡管MOSFET在開關電源、電機控制等一些電子系統中得到廣泛的應用,但是許多電子工程師并沒有十分清楚的理解MOSFET開關過程,以及MOSFET在開關過程中所處的狀態一般來說,電子工程師通常基于柵極電荷理解MOSFET的開通的過程,如圖1所示此圖在MOSFET數據表中可以查到
 
電源的緩啟動電路設計及原理 (諾基亞西門子版本)
圖1 AOT460柵極電荷特性
 
MOSFET的D和S極加電壓為VDD,當驅動開通脈沖加到MOSFET的G和S極時,輸入電容Ciss充電,G和S極電壓Vgs線性上升并到達門檻電壓VGS(th),Vgs上升到VGS(th)之前漏極電流Id≈0A,沒有漏極電流流過,Vds的電壓保持VDD不變。
 
當Vgs到達VGS(th)時,漏極開始流過電流Id,然后Vgs繼續上升,Id也逐漸上升,Vds仍然保持VDD當Vgs到達米勒平臺電壓VGS(pl)時,Id也上升到負載電流最大值ID,Vds的電壓開始從VDD下降。
 
米勒平臺期間,Id電流維持ID,Vds電壓不斷降低。
 
米勒平臺結束時刻,Id電流仍然維持ID,Vds電壓降低到一個較低的值米勒平臺結束后,Id電流仍然維持ID,Vds電壓繼續降低,但此時降低的斜率很小,因此降低的幅度也很小,最后穩定在Vds=Id×Rds(on)因此通??梢哉J為米勒平臺結束后MOSFET基本上已經導通。
 
對于上述的過程,理解難點在于為什么在米勒平臺區,Vgs的電壓恒定?驅動電路仍然對柵極提供驅動電流,仍然對柵極電容充電,為什么柵極的電壓不上升?而且柵極電荷特性對于形象的理解MOSFET的開通過程并不直觀因此,下面將基于漏極導通特性理解MOSFET開通過程。
 
MOSFET的漏極導通特性與開關過程。
 
MOSFET的漏極導通特性如圖2所示MOSFET與三極管一樣,當MOSFET應用于放大電路時,通常要使用此曲線研究其放大特性只是三極管使用的基極電流、集電極電流和放大倍數,而MOSFET使用柵極電壓、漏極電流和跨導。
 
電源的緩啟動電路設計及原理 (諾基亞西門子版本)
圖2 AOT460的漏極導通特性
 
三極管有三個工作區:截止區、放大區和飽和區,MOSFET對應是關斷區、恒流區和可變電阻區注意:MOSFET恒流區有時也稱飽和區或放大區當驅動開通脈沖加到MOSFET的G和S極時,Vgs的電壓逐漸升高時,MOSFET的開通軌跡A-B-C-D如圖3中的路線所示
 
電源的緩啟動電路設計及原理 (諾基亞西門子版本)
圖3 AOT460的開通軌跡
 
開通前,MOSFET起始工作點位于圖3的右下角A點,AOT460的VDD電壓為48V,Vgs的電壓逐漸升高,Id電流為0,Vgs的電壓達到VGS(th),Id電流從0開始逐漸增大
 
A-B就是Vgs的電壓從VGS(th)增加到VGS(pl)的過程從A到B點的過程中,可以非常直觀的發現,此過程工作于MOSFET的恒流區,也就是Vgs電壓和Id電流自動找平衡的過程,即Vgs電壓的變化伴隨著Id電流相應的變化,其變化關系就是MOSFET的跨導:Gfs=Id/Vgs,跨導可以在MOSFET數據表中查到
 
當Id電流達到負載的最大允許電流ID時,此時對應的柵級電壓Vgs(pl)=Id/gFS由于此時Id電流恒定,因此柵極Vgs電壓也恒定不變,見圖3中的B-C,此時MOSFET處于相對穩定的恒流區,工作于放大器的狀態
 
開通前,Vgd的電壓為Vgs-Vds,為負壓,進入米勒平臺,Vgd的負電壓絕對值不斷下降,過0后轉為正電壓驅動電路的電流絕大部分流過CGD,以掃除米勒電容的電荷,因此柵極的電壓基本維持不變Vds電壓降低到很低的值后,米勒電容的電荷基本上被掃除,即圖3中的C點,于是,柵極的電壓在驅動電流的充電下又開始升高,如圖3中的C-D,使MOSFET進一步完全導通
 
C-D為可變電阻區,相應的Vgs電壓對應著一定的Vds電壓Vgs電壓達到最大值,Vds電壓達到最小值,由于Id電流為ID恒定,因此Vds的電壓即為ID和MOSFET的導通電阻的乘積
 
基于MOSFET的漏極導通特性曲線可以直觀的理解MOSFET開通時,跨越關斷區、恒流區和可變電阻區的過程米勒平臺即為恒流區,MOSFET工作于放大狀態,Id電流為Vgs電壓和跨導乘積
 
電路原理詳細說明:
 
MOS管是電壓控制器件,其極間電容等效電路如圖4所示。
 
電源的緩啟動電路設計及原理 (諾基亞西門子版本)
圖4. 帶外接電容C2的N型MOS管極間電容等效電路
 
MOS管的極間電容柵漏電容Cgd、柵源電容Cgs、漏源電容Cds可以由以下公式確定:
 
電源的緩啟動電路設計及原理 (諾基亞西門子版本)
 
公式中MOS管的反饋電容Crss,輸入電容Ciss和輸出電容Coss的數值在MOS管的手冊上可以查到。
 
電容充放電快慢決定MOS管開通和關斷的快慢,Vgs首先給Cgs 充電,隨著Vgs的上升,使得MOS管從截止區進入可變電阻區。進入可變電阻區后,Ids電流增大,但是Vds電壓不變。隨著Vgs的持續增大,MOS管進入米勒平臺區,在米勒平臺區,Vgs維持不變,電荷都給Cgd 充電,Ids不變,Vds持續降低。在米勒平臺后期,MOS管Vds非常小,MOS進入了飽和導通期。為確保MOS管狀態間轉換是線性的和可預知的,外接電容C2并聯在Cgd上,如果外接電容C2比MOS管內部柵漏電容Cgd大很多,就會減小MOS管內部非線性柵漏電容Cgd在狀態間轉換時的作用,另外可以達到增大米勒平臺時間,減緩電壓下降的速度的目的。外接電容C2被用來作為積分器對MOS管的開關特性進行精確控制。控制了漏極電壓線性度就能精確控制沖擊電流。
 
電路描述:
 
圖5所示為基于MOS管的自啟動有源沖擊電流限制法電路。MOS管 Q1放在DC/DC電源模塊的負電壓輸入端,在上電瞬間,DC/DC電源模塊的第1腳電平和第4腳一樣,然后控制電路按一定的速率將它降到負電壓,電壓下降的速度由時間常數C2*R2決定,這個斜率決定了最大沖擊電流。
 
C2可以按以下公式選定:
 
電源的緩啟動電路設計及原理 (諾基亞西門子版本)
 
R2由允許沖擊電流決定:
 
電源的緩啟動電路設計及原理 (諾基亞西門子版本)
 
其中Vmax為最大輸入電壓,Cload為C3和DC/DC電源模塊內部電容的總和,Iinrush為允許沖擊電流的幅度。
 
電源的緩啟動電路設計及原理 (諾基亞西門子版本)
圖5 有源沖擊電流限制法電路
 
電源的緩啟動電路設計及原理 (諾基亞西門子版本)
 
D1是一個穩壓二極管,用來限制MOS管 Q1的柵源電壓。元器件R1,C1和D2用來保證MOS管Q1在剛上電時保持關斷狀態。具體情況是:
 
上電后,MOS管的柵極電壓要慢慢上升,當柵源電壓Vgs高到一定程度后,二極管D2導通,這樣所有的電荷都給電容C1以時間常數R1×C1充電,柵源電壓Vgs以相同的速度上升,直到MOS管Q1導通產生沖擊電流。
 
以下是計算C1和R1的公式:
 
電源的緩啟動電路設計及原理 (諾基亞西門子版本)
 
其中Vth為MOS管Q1的最小門檻電壓,VD2為二極管D2的正向導通壓降,Vplt為產生Iinrush沖擊電流時的柵源電壓。Vplt可以在MOS管供應商所提供的產品資料里找到。
 
MOS管選擇
 
以下參數對于有源沖擊電流限制電路的MOS管選擇非常重要:
 
l 漏極擊穿電壓 Vds
 
必須選擇Vds比最大輸入電壓Vmax和最大輸入瞬態電壓還要高的MOS管,對于通訊系統中用的MOS管,一般選擇Vds≥100V。
 
l 柵源電壓Vgs
 
穩壓管D1是用來保護MOS管Q1的柵極以防止其過壓擊穿,顯然MOS管Q1的柵源電壓Vgs必須高于穩壓管D1的最大反向擊穿電壓。一般MOS管的柵源電壓Vgs為20V,推薦12V的穩壓二極管。
 
l 導通電阻Rds_on.
 
MOS管必須能夠耗散導通電阻Rds_on所引起的熱量,熱耗計算公式為:
 
電源的緩啟動電路設計及原理 (諾基亞西門子版本)
 
其中Idc為DC/DC電源的最大輸入電流,Idc由以下公式確定:
 
電源的緩啟動電路設計及原理 (諾基亞西門子版本)
 
其中Pout為DC/DC電源的最大輸出功率,Vmin為最小輸入電壓,η為DC/DC電源在輸入電壓為Vmin輸出功率為Pout時的效率。η可以在DC/DC電源供應商所提供的數據手冊里查到。MOS管的Rds_on必須很小,它所引起的壓降和輸入電壓相比才可以忽略。
 
電源的緩啟動電路設計及原理 (諾基亞西門子版本)
圖6. 有源沖擊電流限制電路在75V輸入,DC/DC輸出空載時的波形
 
設計舉例
 
已知:Vmax=72V
 
Iinrush=3A
 
選擇MOS管Q1為IRF540S
 
選擇二極管D2為BAS21
 
按公式(4)計算:C2>>1700pF。選擇 C2=0.01μF;
 
按公式(5)計算:R2=252.5kW。選擇 R2=240kW,選擇R3=270W<
 
按公式(7)計算:C1=0.75μF。選擇 C1=1μF;
 
按公式(8)計算:R1=499.5W。選擇 R1=1kW
 
圖6所示為圖5 電路的實測波形,其中DC/DC電源輸出為空載。
 
 
推薦閱讀:
 
盛思銳創新推出首款微型二氧化碳傳感器 
 
要采購開關么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡
美国毛片一区二区| 国产日韩欧美一区二区三区乱码| 菠萝蜜视频在线观看一区| 欧美视频在线一区| 国产精品久久久久久亚洲毛片| 国产成人一区在线| 欧美日韩国产一区| 日日夜夜一区二区| 欧美一级免费大片| 久久成人久久爱| 久久免费看少妇高潮| 成人av午夜电影| 亚洲在线一区二区三区| 欧美日韩成人在线| 蜜臂av日日欢夜夜爽一区| 久久久美女毛片| 色国产综合视频| 美女一区二区视频| 中文字幕精品—区二区四季| 欧美视频精品在线观看| 精品制服美女丁香| 国产精品日产欧美久久久久| bt欧美亚洲午夜电影天堂| 欧美午夜影院一区| 亚洲无人区一区| 777xxx欧美| 国产69精品久久777的优势| 国产精品美女久久久久av爽李琼 | 亚洲人123区| 欧美三级三级三级爽爽爽| 老司机精品视频导航| 中文字幕精品一区| 欧美一区二区视频在线观看2020| 国产成人亚洲综合色影视| 亚洲乱码中文字幕综合| 精品av综合导航| 欧美少妇一区二区| 亚洲欧美一区二区三区久本道91| 国产91综合一区在线观看| 亚洲少妇最新在线视频| 777xxx欧美| 99在线视频精品| 国产在线精品一区在线观看麻豆| 一区二区三区高清| 中文字幕一区二区三区四区不卡| 久久人人97超碰com| 91精品国产综合久久久蜜臀粉嫩 | 天天av天天翘天天综合网| 久久精品无码一区二区三区| 91精品国产福利| 欧美日韩一区二区三区四区| 欧美激情一区二区三区不卡| 91精品啪在线观看国产60岁| 波多野结衣精品在线| 亚洲福中文字幕伊人影院| 国产精品麻豆视频| 欧美tk—视频vk| 欧美一区二区三级| 欧美日韩精品久久久| 99re这里只有精品6| 国产精品综合网| 久久99国产精品免费| 午夜a成v人精品| 丝袜脚交一区二区| 日韩在线卡一卡二| 亚洲一区在线观看网站| 亚洲欧美日韩在线| √…a在线天堂一区| 亚洲人成网站精品片在线观看| 国产精品网站一区| 国产精品久久久久aaaa樱花 | 欧美一区二区三级| 欧美日韩国产综合视频在线观看 | 成人免费在线视频观看| 国产精品电影院| 亚洲欧洲一区二区在线播放| 中文字幕欧美一| 亚洲精品视频在线看| 亚洲午夜三级在线| 亚洲自拍偷拍网站| 日韩精品成人一区二区三区| 九色综合国产一区二区三区| 国产精品一区2区| 99麻豆久久久国产精品免费| 色婷婷亚洲综合| 欧美一区二区高清| 久久尤物电影视频在线观看| 亚洲色图视频免费播放| 亚洲va欧美va人人爽| 久久se精品一区二区| 91免费看片在线观看| 91精品午夜视频| 欧美国产一区二区| 一区二区三区91| 国产麻豆精品theporn| 99久久久无码国产精品| 日韩欧美国产三级| 亚洲欧洲性图库| 极品少妇一区二区| 97精品久久久久中文字幕| 日韩一区二区三区视频在线观看| 亚洲国产精品99久久久久久久久| 亚洲一区二区在线免费观看视频 | 蜜桃视频免费观看一区| 粉嫩欧美一区二区三区高清影视 | 欧美三日本三级三级在线播放| 精品精品国产高清a毛片牛牛| 亚洲免费视频中文字幕| 韩国女主播成人在线| 精品1区2区3区| 国产精品久久久久久久久图文区 | 欧美午夜电影一区| 久久在线观看免费| 午夜精品免费在线| 99视频超级精品| 精品成人在线观看| 午夜精品一区二区三区电影天堂 | 成人一区二区三区视频| 欧美一区二区在线看| 一级日本不卡的影视| 国产成人免费视频网站高清观看视频| 欧美嫩在线观看| 亚洲一区二区三区中文字幕在线 | 国产人妖乱国产精品人妖| 日韩电影一区二区三区| 91视频精品在这里| 国产精品免费网站在线观看| 激情图片小说一区| 欧美一级一区二区| 免费成人小视频| 欧美一级日韩一级| 蜜桃av一区二区在线观看| 91精品综合久久久久久| 日韩精品免费视频人成| 狠狠色狠狠色综合日日91app| 91网站在线播放| 国产亚洲一区二区在线观看| 亚洲国产精品一区二区www在线| 成人av免费观看| 国产色综合一区| 国产一区二区三区四区五区美女 | 国产福利91精品一区二区三区| 日韩欧美国产综合| 亚洲chinese男男1069| 欧美日韩aaaaaa| 免费av成人在线| 日韩视频一区二区| 狠狠色伊人亚洲综合成人| 国产校园另类小说区| 99久久精品国产一区二区三区 | 91视频在线看| 亚洲午夜免费福利视频| 3d成人h动漫网站入口| 久久99久久99| 国产日产欧美一区二区视频| 97精品国产97久久久久久久久久久久 | 精品一区二区三区免费毛片爱| 久久午夜老司机| 91网址在线看| 首页欧美精品中文字幕| 精品福利一区二区三区| 成人av网站在线观看| 亚洲六月丁香色婷婷综合久久 | www.在线欧美| 亚洲成人av在线电影| 日韩欧美一区二区视频| 国产久卡久卡久卡久卡视频精品| 国产精品久久国产精麻豆99网站| 91丨九色丨国产丨porny| 亚洲影视在线播放| 精品国产一区二区在线观看| 不卡欧美aaaaa| 人人狠狠综合久久亚洲| 久久免费偷拍视频| 欧美午夜精品一区二区三区 | 欧美性生活影院| 日本欧美一区二区三区乱码| 久久老女人爱爱| 欧美探花视频资源| 久久国产三级精品| 亚洲麻豆国产自偷在线| 日韩三级精品电影久久久| 99久久婷婷国产综合精品| 蜜臀a∨国产成人精品| 国产精品色哟哟网站| 91精品国产色综合久久不卡蜜臀| 国产精品1区二区.| 午夜激情综合网| 久久久精品天堂| 欧美卡1卡2卡| 色琪琪一区二区三区亚洲区| 国模娜娜一区二区三区| 亚洲综合在线免费观看| 精品国产乱码久久久久久1区2区 | 99国内精品久久| 国产一区在线精品| 国产综合久久久久久鬼色| 亚洲第一精品在线| 精品国产露脸精彩对白 | 成人精品视频一区二区三区|