欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡

你的位置:首頁 > 電源管理 > 正文

解析三菱電機6.5kV全SiC功率模塊

發布時間:2018-09-14 責任編輯:wenwei

【導讀】本文介紹了6.5kV新型全SiC MOSFET功率模塊的內部結構和電氣特性,相對于傳統的Si IGBT模塊、傳統全SiC MOSFET功率模塊,新型全SiC MOSFET功率模塊在靜態特性、動態特性和損耗方面優勢明顯。
 
三菱電機開發了首款6.5kV全SiC(Silicon Carbide)功率模塊,采用高絕緣耐壓HV100標準封裝(100mmÍ140mm)。通過電磁仿真和電路仿真,優化了HV100封裝的內部設計,并通過實際試驗驗證了穩定的電氣特性。6.5kV HV100全SiC功率模塊為了提高功率密度,將SiC SBD(Schottky Barrier Diode)與SiC MOSFET芯片集成在一起。
 
在續流時,集成的SiC SBD會導通,而SiC MOSFET的寄生體二極管不會導通,所以避免了雙極性退化效應發生。本文對比了Si IGBT功率模塊(Si IGBT芯片和Si二極管芯片)、傳統全SiC MOSFET功率模塊(SiC MOSFET芯片,無外置SBD)和新型全SiC MOSFET功率模塊(SiC MOSFET和SiC SBD集成在同一個芯片上),結果表明新型全SiC MOSFET功率模塊在高溫、高頻工況下優勢明顯。
 
1、引 言
 
SiC材料具有優異的物理性能,由此研發的SiC功率模塊可以增強變流器的性能[1-2]。相對Si芯片,全SiC芯片可以用更小的體積實現更高耐壓、更低損耗,給牽引變流系統和電力傳輸系統的研發設計帶來更多便利。3.3kV全SiC功率模塊已經在牽引變流器中得到應用,有著顯著的節能、減小變流器體積和重量等作用[3-4]。6.5kV Si IGBT模塊已經用于高鐵和電力傳輸系統,這些市場期待6.5kV SiC功率模塊能帶來更多好處。基于此,三菱電機開發了6.5kV全SiC MOSFET功率模塊[5-7],其采用HV100標準封裝[8],如圖1所示。這個封裝為方便并聯應用而設計,電氣穩定性顯得尤為重要。
 
解析三菱電機6.5kV全SiC功率模塊
 
本文介紹了6.5kV新型全SiC MOSFET功率模塊的內部結構和電氣特性,相對于傳統的Si IGBT模塊、傳統全SiC MOSFET功率模塊,新型全SiC MOSFET功率模塊在靜態特性、動態特性和損耗方面優勢明顯。
 
2、6.5kV新型SiC MOSFET功率模塊特性
 
2.1  集成SiC SBD的SiC-MOSFET芯片特性
 
HV100封裝6.5kV新型全SiC MOSFET功率模塊采用SiC MOSFET和SiC SBD一體化芯片技術,最高工作結溫可達175℃。
 
模塊設計中的一個重要難點是避免SiC MOSFET的寄生體二極管(PIN二極管)導通,一旦PIN二極管中有少子(空穴)電流流向二極管的陰極(SiC MOSFET的漏極),因為SiC芯片外延層特性,雙極性退化效應發生的可能性就會增加。在續流狀態下,SiC SBD的正向飽和壓降在全電流范圍內比SiC MOSFET的寄生體二極管要低。
 
獨立放置的SiC MOSFET 和SiC SBD芯片如圖2(a)所示,SiC SBD的面積是SiC MOSFET芯片面積的3倍;如果將SiC SBD集成在SiC MOSFET芯片上面,如圖2(b)所示,總面積是單個SiC MOSFET芯片面積的1.05倍。集成在SiC MOSFET芯片上面的SiC SBD采用垂直元胞結構,在續流時承載全部反向電流,同時使SiC MOSFET芯片的寄生體二極管不流過電流,從而消除雙極性退化效應。如圖2所示,由于芯片面積減小,模塊整體體積就可以減小。相對于傳統的Si IGBT模塊和傳統全SiC MOSFET功率模塊,采用相同HV100封裝的新型全SiC MOSFET功率模塊可以實現業界最高的功率密度。
 
解析三菱電機6.5kV全SiC功率模塊
 
2.2  新型SiC MOSFET功率模塊的優化設計
 
6.5kV新型全SiC MOSFET功率模塊內部采用半橋拓撲,一般的大功率應用可以采用并聯連接來提高輸出功率。高電壓功率模塊在高頻下運行,需要考慮模塊自身的寄生電容、寄生電感和寄生阻抗等。3D電磁仿真是驗證內部封裝結構和芯片布局的一種有效方法。電磁干擾可能帶來三種不良的影響:一是開關過程中的電流反饋;二是上、下橋臂開關特性不一致;三是柵極電壓振蕩。電磁干擾會增加模塊內部功率芯片布置、綁定線連接及其他電氣結構設計的復雜性。
 
我們構建了6.5kV新型全SiC MOSFET功率模塊的內部等效電路和芯片模型,通過3D電磁仿真和電路仿真,驗證了功率模塊設計的合理性。
 
2.2.1
 
優化開關速度
 
如果在模塊封裝設計時沒有考慮電磁干擾,在實際工況中,就會產生開關過程中的電流反饋,使芯片的固有開關速度發生變化,進而可能造成上橋臂和下橋臂的開關速度不一致。負的電流反饋可以降低芯片的開關速度,導致芯片的開關損耗增加,因此開關速度的不平衡可以導致模塊內部各個芯片的熱分布不一致。圖3顯示了6.5kV新型全SiC MOSFET功率模塊在有電磁干擾和無電磁干擾下的仿真開通波形,從圖中可以看出,通過優化內部電氣設計,電磁干擾對6.5kV新型全SiC MOSFET功率模塊沒有影響。圖4為6.5kV新型全SiC MOSFET功率模塊上橋臂和下橋臂的仿真開通波形,兩者的波形幾乎完全一樣,在實際測試時也驗證了這一點。
 
解析三菱電機6.5kV全SiC功率模塊
 
2.2.2
 
柵極電壓振蕩抑制
 
在高電流密度功率模塊中,內部有很多功率芯片并聯,寄生電容和寄生電感可能組成復雜的諧振電路,從而可能造成柵極電壓振蕩。柵極電壓振蕩幅度過大,可能損壞柵極。通常可以增大芯片內部的門極電阻來達到抑制振蕩的目的,但是增大內部門極電阻會造成開關損耗增加,在設計模塊時,我們希望內部柵極電阻盡可能小。借助仿真手段,在保持小的柵極電阻的情況下,我們通過優化內部電氣布局很好地抑制了柵極電壓振蕩。
 
解析三菱電機6.5kV全SiC功率模塊
 
圖5為6.5kV新型全SiC MOSFET功率模塊在優化內部設計之前和優化之后的柵極電壓仿真波形。優化之前,有一個比較大的振蕩,振幅可達13V。優化之后,柵極電壓振蕩得到抑制,幅度只有2V,在實際測試中也驗證了這一點。
 
2.3  靜態特性參數對比
 
圖6為400A IGBT模塊(從額定電流1000A IGBT轉換而來)、400A傳統全SiC MOSFET功率模塊(不含SiC SBD)和400A新型全SiCMOSFET功率模塊通態壓降對比。在150℃時,SiIGBT的通態電阻比較低,這是因為Si IGBT是雙極性器件,而SiC MOSFET屬于單極性器件。400A傳統全SiC MOSFET功率模塊(不含SiC SBD)和400A新型全SiCMOSFET功率模塊芯片面積幾乎相同,所以在全溫度范圍內其通態電阻也幾乎相同。
 
二極管正向壓降對比如圖7和圖8所示。圖7是各模塊件在非同步整流狀態(MOSFET不導通)下二極管電流特性的對比,圖8為各模塊在同步整流狀態(MOSFET導通)下二極管電流特性的對比。從圖中可以看出,在非同步整流狀態下,傳統SiC-MOSFET功率模塊的表現呈非線性特性;而新型全SiC MOSFET功率模塊,無論在同步整流還是非同步整流時,都呈線性特征。由上,無論在MOSFET導通狀態,還是在二極管導通狀態,全SiC MOSFET功率模塊都表現出單極性器件的特性。
 
解析三菱電機6.5kV全SiC功率模塊
 
解析三菱電機6.5kV全SiC功率模塊
 
2.4  動態特性參數對比
 
圖9為新型全SiC MOSFET功率模塊在3600V/400A 在室溫和高溫下(175℃)的開通波形對比,從圖中可以看出,經過內部結構優化的新型全SiC MOSFET功率模塊上橋臂和下橋臂在室溫和高溫下的開關速度幾乎完全一樣,所以其室溫和高溫下的損耗也幾乎一樣。一般來說,隨著溫度的增加(載流子壽命增加),反向恢復電流也會隨之增加,但是如圖9所示,高溫下的反向恢復電荷(Qrr)相對常溫增加很少。與靜態特性一樣,新型全SiC MOSFET功率模塊在動態特性上表現出單極性器件的特性。
 
解析三菱電機6.5kV全SiC功率模塊
 
2.5  實測開關波形和開關損耗對比
 
圖10為傳統全SiC MOSFET功率模塊和新型全SiC MOSFET功率模塊的開通波形在室溫和175℃下對比,從圖中可以看出在室溫下,兩者波形很接近,但是在175℃下,傳統全SiCMOSFET功率模塊反向恢復電流更大,VDS下降速度更慢。而新型全SiC MOSFET功率模塊因為反向恢復電流小,所以其VDS下降速度更快。同時這些特性表明兩者的開通損耗和反向恢復損耗在室溫下非常接近,但是在高溫下,新型全SiC MOSFET功率模塊的開通損耗和反向恢復損耗相對更小,主要原因是反向恢復時,新型全SiCMOSFET功率模塊的寄生體二極管不導通。
 
解析三菱電機6.5kV全SiC功率模塊
 
在175℃時,傳統全SiC MOSFET功率模塊在開通時會有一個比較大的振蕩,而振蕩可能造成電磁干擾,進而影響模塊的安全工作。實際應用中,希望這個振蕩越小越好,為了抑制振蕩,可以減緩模塊開關速度或者增加外部吸收電路。但是對于新型全SiC MOSFET功率模塊,在高溫下振蕩非常小,無需采取額外措施來抑制振蕩。
 
在高壓全SiC MOSFET功率模塊中,造成以上差異的主要原因是傳統全SiC MOSFET功率模塊有一層厚的外延層,在反向恢復時會產生比較大的反向恢復電流。
 
圖11為Si IGBT模塊、傳統全SiC MOSFET功率模塊和新型全SiC MOSFET功率模塊的開關損耗對比(Si IGBT模塊與全SiCMOSFET功率模塊分別設置在最佳開關速度)。從圖中可以看出,全SiC MOSFET功率模塊損耗明顯小于Si IGBT模塊。并且,在175℃時,新型全SiC MOSFET功率模塊比傳統全SiC MOSFET功率模塊開通損耗低18%,反向恢復損耗低80%。
 
解析三菱電機6.5kV全SiC功率模塊
 
3、損耗對比
 
在開關頻率fs=0.5kHz、2kHz和10kHz,PF=0.8,調制比M=1,母線電壓VCC=3600V,輸出電流IO=200A的工況下,對比了采用Si IGBT模塊(150℃)、傳統全SiC MOSFET功率模塊(175℃)和新型全SiC MOSFET功率模塊(175℃)的逆變器損耗,如圖12所示。從圖中可以看出,在fs=0.5kHz,通態損耗占很大比例,此時全SiC MOSFET功率模塊比Si IGBT模塊低64%,同時傳統全SiC MOSFET功率模塊和新型全SiC MOSFET功率模塊相差很小。
 
在fs=2kHz,全SiC MOSFET功率模塊比Si IGBT模塊低85%,而新型全SiC MOSFET功率模塊相對傳統全SiCMOSFET功率模塊低7%。在fs=10kHz,開關損耗占據很大比例,此時全SiC MOSFET功率模塊比Si IGBT功率模塊低92%,而新型全SiC MOSFET功率模塊相對傳統全SiCMOSFET功率模塊低16%。從以上可以看出,新型全SiCMOSFET功率模塊更適合高頻、高溫應用。
 
解析三菱電機6.5kV全SiC功率模塊
 
4、結 論
 
三菱電機開發了業界首款采用HV100封裝的新型6.5kV全SiC MOSFET功率模塊。通過電磁仿真、電路仿真和實際測試,確認了內部電氣設計的合理性。同時,新型6.5kV全SiC MOSFET功率模塊采用SiC SBD和SiC MOSFET一體化芯片設計,減小了模塊體積,實現了6.5kV業界最高的功率密度。通過靜態測試和動態測試,確認了新型6.5kV全SiC MOSFET功率模塊無論在SiC MOSFET導通還是SiC SBD導通時都表現出單極性器件的特性,且其SiC SBD在高溫下反向恢復電流小,沒有雙極性退化效應。新型6.5kV全SiC MOSFET功率模塊在高溫下導通時VDS下降更快,其導通損耗更小,且沒有振蕩現象發生。
 
同時,對比了Si IGBT模塊、傳統全SiC MOSFET功率模塊和新型全SiC MOSFET功率模塊的損耗,在開關頻率為10kHz時,新型全SiCMOSFET功率模塊的損耗比Si IGBT模塊大概低92%,比傳統全SiC MOSFET功率模塊相對低16%。相對傳統全SiC MOSFET功率模塊,由于SiC MOSFET體二極管與集成的SiC SBD之間反向恢復特性的不同,新型全SiC MOSFET功率模塊在高溫、高頻等應用工況下更有優勢。
 
 
推薦閱讀:
 
工業過渡:實現可信的工業自動化
選擇正確的開關:交流和直流大有不同
熱電阻四線制、三線制、兩線制的區別對比分析
PT100熱電阻三線制和二線制接法區別
優劣幾何?三角法和TOF 激光雷達大解析!
要采購開關么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡
亚洲另类春色校园小说| 激情综合网天天干| 亚洲成人精品一区| 国产成人在线视频免费播放| 97久久人人超碰| 久久夜色精品一区| 午夜精品视频在线观看| 成人午夜激情在线| 精品国精品国产尤物美女| 亚洲精品国产无天堂网2021| 国产成人av资源| 日韩一区二区三| 亚洲国产cao| 91高清在线观看| 亚洲天堂免费在线观看视频| 国产91精品一区二区麻豆亚洲| 欧美一二三区在线| 亚洲超丰满肉感bbw| 韩国毛片一区二区三区| 91精品国产综合久久久久久久| 欧美疯狂做受xxxx富婆| 蜜臀久久99精品久久久久宅男| 日本道免费精品一区二区三区| 欧美videos大乳护士334| 亚洲成人中文在线| 91色乱码一区二区三区| 国产精品成人午夜| 99riav一区二区三区| 日本一区二区三区国色天香| 国产综合色产在线精品| 精品伦理精品一区| 精品在线你懂的| 精品日韩成人av| 国产精品1区二区.| 欧美经典一区二区三区| 春色校园综合激情亚洲| 中文字幕在线观看一区二区| 国产三区在线成人av| 色综合婷婷久久| 欧美亚洲一区二区三区四区| 亚洲丝袜另类动漫二区| 成人av在线一区二区三区| 国产精品对白交换视频| 91视频一区二区| 亚洲3atv精品一区二区三区| 欧美精品tushy高清| 精品一区二区三区香蕉蜜桃 | 国产麻豆精品在线观看| 久久久91精品国产一区二区三区| 成人性生交大合| 亚洲精品老司机| 91.com视频| 国产精品一二三区| 亚洲欧美激情小说另类| 欧美另类z0zxhd电影| 美女久久久精品| 欧美久久久久久久久久| 国产精品一二三四五| 日本欧美在线看| 久久综合九色综合久久久精品综合 | 粉嫩13p一区二区三区| 亚洲黄色片在线观看| 日韩一区二区免费视频| 大陆成人av片| 天堂午夜影视日韩欧美一区二区| 日韩免费高清电影| 成人动漫视频在线| 日本美女一区二区| 国产精品理论片| 日韩欧美在线不卡| 91在线无精精品入口| 免费视频最近日韩| 国产精品视频一二| 日韩欧美第一区| 91福利在线导航| 精品亚洲国内自在自线福利| 欧美mv日韩mv亚洲| 欧美日韩美少妇| 亚洲色欲色欲www| 日韩欧美自拍偷拍| 色激情天天射综合网| 国产精品综合网| 日韩在线a电影| 亚洲精品一二三区| 中文字幕精品在线不卡| 日韩视频一区二区在线观看| 色偷偷一区二区三区| 国产不卡在线播放| 日韩不卡在线观看日韩不卡视频| 亚洲伦理在线免费看| 中文欧美字幕免费| 欧美精品一区二区三区一线天视频| 欧美日韩国产中文| 99精品视频在线观看| 国内外成人在线| 麻豆91在线观看| 日韩和的一区二区| 亚洲一区二区四区蜜桃| 成人欧美一区二区三区视频网页| 久久精品夜色噜噜亚洲aⅴ| 欧美一区二区精品在线| 久久久99精品免费观看不卡| 成人黄色片在线观看| 国产乱国产乱300精品| 美女视频黄 久久| 日韩激情视频在线观看| 日韩不卡一区二区| 日本欧美肥老太交大片| 日韩电影一区二区三区| 日韩和欧美的一区| 日韩国产在线观看一区| 日韩电影免费一区| 免费成人在线影院| 精品影院一区二区久久久| 激情都市一区二区| 久久综合综合久久综合| 精品一区二区三区在线观看国产| 久久成人av少妇免费| 国产麻豆91精品| 成人国产电影网| 91在线观看地址| 色婷婷av一区| 欧美日韩激情一区二区三区| 欧美人妇做爰xxxⅹ性高电影| 欧美视频在线观看一区二区| 欧美日韩高清影院| 久久91精品国产91久久小草| 一区二区三区日韩欧美| 亚洲欧美日韩国产另类专区| 一区二区三区中文在线观看| 亚洲一区影音先锋| 亚洲综合自拍偷拍| 日本亚洲一区二区| 国产精品一线二线三线| av午夜精品一区二区三区| 欧美色手机在线观看| 日韩欧美激情一区| 国产精品剧情在线亚洲| 一区二区成人在线| 久久不见久久见免费视频1| 成人激情图片网| 欧美精品三级日韩久久| 26uuu国产在线精品一区二区| 国产欧美1区2区3区| 亚洲一区二区精品视频| 国产精品一卡二卡| 在线视频观看一区| 亚洲精品一区二区精华| 亚洲欧美偷拍卡通变态| 久久国产精品免费| 色呦呦一区二区三区| 欧美成人性战久久| 1024成人网色www| 久久99精品久久久久| 色94色欧美sute亚洲线路二| 26uuu久久天堂性欧美| 亚洲小说欧美激情另类| 成人天堂资源www在线| 91麻豆精品国产自产在线观看一区| 日韩欧美国产一区在线观看| 最新欧美精品一区二区三区| 在线观看av一区二区| 91麻豆国产自产在线观看| 欧美xxxxx裸体时装秀| 一区二区三区国产精品| 国产精品911| 日韩一级大片在线观看| 亚洲午夜久久久久中文字幕久| 国产真实乱偷精品视频免| 91精品国产综合久久蜜臀 | 91香蕉视频污| www国产亚洲精品久久麻豆| 亚洲aaa精品| 欧美综合在线视频| 亚洲天堂久久久久久久| 成人激情免费电影网址| 久久精品男人天堂av| 欧美96一区二区免费视频| 欧美亚洲动漫制服丝袜| 成人免费视频在线观看| 成人精品小蝌蚪| 亚洲国产精品成人综合| 另类小说欧美激情| 欧美一区二区啪啪| 午夜精品久久久久久久久久久 | 国产在线乱码一区二区三区| 日韩精品一二三| 99麻豆久久久国产精品免费| 欧美激情一区在线观看| 美女视频黄免费的久久| 欧美大度的电影原声| 人妖欧美一区二区| 欧美日韩成人一区二区| 天涯成人国产亚洲精品一区av| 精品视频在线免费看| 日韩在线卡一卡二| 日韩免费观看2025年上映的电影| 蜜桃久久久久久久| 久久综合九色综合97婷婷女人| 狠狠色丁香久久婷婷综|