欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡

你的位置:首頁 > 測試測量 > 正文

時域時鐘抖動分析(一)

發布時間:2012-03-21

中心議題:

  • 介紹如何準確地估算某個時鐘源的抖動
  • 該組合抖動將用于計算ADC的SRN
  • 介紹時鐘信號轉換速率的優化

解決方案:

  • 確定采樣時鐘抖動
  • 確定正確的整合下/下限
  • 將該組合抖動將用于計算ADC的SRN與實際結果對比


新型的高速 ADC 都具備高模擬輸入帶寬(約為最大采樣頻率的 3 到 6 倍),因此它們可以用于許多欠采樣應用中。ADC 設計的最新進展極大地擴展了可用輸入范圍,這樣系統設計人員便可以去掉至少一個中間頻率級,從而降低成本和功耗。在欠采樣接收機設計中必須要特別注意采樣時鐘,因為在一些高輸入頻率下時鐘抖動會成為限制信噪比 (SNR) 的主要原因。

本系列文章共有三部分,“第 1 部分”重點介紹如何準確地估算某個時鐘源的抖動,以及如何將其與 ADC 的孔徑抖動組合。在“第 2 部分”中,該組合抖動將用于計算 ADC 的 SRN,然后將其與實際測量結果對比。“第 3 部分”將介紹如何通過改善 ADC 的孔徑抖動來進一步增加 ADC 的 SNR,并會重點介紹時鐘信號轉換速率的優化。

采樣過程回顧

根據 Nyquist-Shannon 采樣定理,如果以至少兩倍于其最大頻率的速率來對原始輸入信號采樣,則其可以得到完全重建。假設以 100 MSPS 的速率對高達 10MHz 的輸入信號采樣,則不管該信號是位于 1 到 10MHz 的基帶(首個Nyquist 區域),還是在 100 到 110MHz 的更高 Nyquist 區域內欠采樣,都沒關系(請參見圖 1)。在更高(第二個、第三個等)Nyquist 區域中采樣,一般被稱作欠采樣或次采樣。然而,在 ADC 前面要求使用抗混疊過濾,以對理想 Nyquist 區域采樣,同時避免重建原始信號過程中產生干擾。
 


圖 1 100MSPS 采樣的兩個輸入信號顯示了混疊帶來的相同采樣點


時域抖動

仔細觀察某個采樣點,可以看到計時不準(時鐘抖動或時鐘相位噪聲)是如何形成振幅變化的。由于高 Nyquist 區域(例如,f1 = 10 MHz 到 f2 = 110 MHz)欠采樣帶來輸入頻率的增加,固定數量的時鐘抖動自理想采樣點產生更大數量的振幅偏差(噪聲)。另外,圖 2 表明時鐘信號自身轉換速率對采樣時間的變化產生了影響。轉換速率決定了時鐘信號通過零交叉點的快慢。換句話說,轉換速率直接影響 ADC 中時鐘電路的觸發閾值。
 


圖 2 時鐘抖動形成更多快速輸入信號振幅誤差

[page]
如果 ADC 的內部時鐘緩沖器上存在固定數量的熱噪聲,則轉換速率也轉換為計時不準,從而降低了 ADC 的固有窗口抖動。如圖 3 所示,窗口抖動與時鐘抖動(相位噪聲)沒有一點關系,但是這兩種抖動分量在采樣時間組合在一起。圖 3 還表明窗口抖動隨轉換速率降低而增加。轉換速率一般直接取決于時鐘振幅。


時鐘抖動導致的 SNR 減弱

有幾個因素會限制 ADC 的 SNR,例如:量化噪聲(管線式轉換器中一般不明顯)、熱噪聲(其在低輸入頻率下限制 SNR),以及時鐘抖動(SNRJitter)(請參見下面方程式 1)。SNRJitter 部分受到輸入頻率 fIN(取決于 Nyquist 區域)的限制,同時受總時鐘抖動量 tJitter 的限制,其計算方法如下:


SNRJitter[dBc]=-20×log(2π×fIN×tJitter)??(2)

正如我們預計的那樣,利用固定數量的時鐘抖動,SNR 隨輸入頻率上升而下降。圖 4 描述了這種現象,其顯示了 400 fs 固定時鐘抖動時一個 14 位管線式轉換器的 SNR。如果輸入頻率增加十倍,例如:從 10MHz 增加到 100MHz,則時鐘抖動帶來的最大實際 SNR 降低 20dB。


如前所述,限制 ADC SNR 的另一個主要因素是 ADC 的熱噪聲,其不隨輸入頻率變化。一個 14 位管線式轉換器一般有 ~70 到 74 dB 的熱噪聲,如圖 4 所示。我們可以在產品說明書中找到 ADC 的熱噪聲,其相當于最低指定輸入頻率(本例中為 10MHz)的 SNR,其中時鐘抖動還不是一個因素。

讓我們來對一個具有 400 fs 抖動時鐘電路和 ~73 dB 熱噪聲的 14 位 ADC 進行分析。低輸入頻率(例如:10MHz 等)下,該 ADC 的 SNR 主要由其熱噪聲定義。由于輸入頻率增加,400-fs 時鐘抖動越來越占據主導,直到 ~300 MHz 時完全接管。盡管相比 10MHz 的 SNR,100MHz 輸入頻率下時鐘抖動帶來的 SNR 每十倍頻降低 20dB,但是總 SNR 僅降低 ~3.5 dB(降至 69.5dB),因為存在 73-dB 熱噪聲(請參見圖 5):
 
現在,很明顯,如果 ADC 的熱噪聲增加,對高輸入頻率采樣時時鐘抖動便非常重要。例如,一個 16 位 ADC 具有 ~77 到 80 dB 的熱噪聲層。根據圖 4 所示曲線圖,為了最小化 100MHz 輸入頻率 SNR 的時鐘抖動影響,時鐘抖動需為大約 150 fs 或更高。

確定采樣時鐘抖動

如前所述,采樣時鐘抖動由時鐘的計時不準(相位噪聲)和 ADC 的窗口抖動組成。這兩個部分結合組成如下:

我們在產品說明書中可以找到 ADC 的孔徑口抖動 (aperture jitter)。這一值一般與時鐘振幅或轉換速率一起指定,記住這一點很重要。低時鐘振幅帶來低轉換速率,從而增加窗口抖動。
[page]
時鐘輸入抖動

時鐘鏈(振蕩器、時鐘緩沖器或 PLL)中器件的輸出抖動一般規定在某個頻率范圍內,該頻率通常偏離于基本時鐘頻率 10 kHz 到 20 MHz(單位也可以是微微秒或者繪制成相位噪聲圖),可以將其整合到一起獲取抖動信息。但是,低端的 10kHz 和高端的 20MHz 有時并非正確的使用邊界,因為它們調試依賴于其他系統參數,我們將在后面進行詳細介紹。圖 6 描述了設置正確整合限制的重要性,圖中的相位噪聲圖以其每十倍頻抖動內容覆蓋。我們可以看到,如果將下限設定為 100-Hz 或 10kHz 偏移,則產生的抖動便極為不同。同樣地,例如,設置上整合限制為 10 或 20MHz,可得到相比 100MHz 設置極為不同的結果。
 


圖 5 產生的 ADC SNR 受熱噪聲和時鐘抖動的限制

 


圖 6 每十倍頻計算得到的時鐘相位噪聲抖動影響


確定正確的整合下限

在采樣過程中,輸入信號與采樣時鐘信號混頻在一起,包括其相位噪聲。當進行輸入信號 FFT 分析時,主 FFT 容器 (bin) 集中于輸入信號。采樣信號周圍的相位噪聲(來自時鐘或輸入信號)決定了鄰近主容器的一些容器的振幅,如圖 7 所示。因此,小于 1/2 容器尺寸的偏頻的所有相位噪聲都集中于輸入信號容器中,且未增加噪聲。因此,相位噪聲整合帶寬下限應設定為 1/2 FFT 容器尺寸。 FFT 容器尺寸計算方法如下:

為了進一步描述該點,我們利用兩個不同的FFT尺寸—131,072 和 1,048,576 點,使用 ADS54RF63 進行實驗。采樣速率設定為 122.88MSPS,而圖 8 則顯示了時鐘相位噪聲。我們將一個 6-MHz、寬帶通濾波器添加到時鐘輸入,以限制影響抖動的寬帶噪聲數量。選擇 1-GHz 輸入信號的目的是確保 SNR 減弱僅由于時鐘抖動。圖 8 表明兩個 FFT 尺寸的 1/2 容器尺寸到 40MHz 相位噪聲整合抖動結果都極為不同,而“表 1”的 SNR 測量情況也反映這種現象。
 


圖 7 近區相位噪聲決定主容器附近 FFT 容器的振幅

[page]
設置正確的整合上限

圖 6 所示相位噪聲圖抖動貢獻量為 ~360 fs,其頻率偏移為 10 到 100MHz 之間。這比 100Hz 到 10MHz 之間偏移的所有 ~194 fs 抖動貢獻值要大得多。因此,所選整合上限可極大地影響計算得到的時鐘抖動,以及預計SNR匹配實際測量的好壞程度。

要確定正確的限制,您必須記住采樣過程中非常重要的事情是:來自其他尼奎斯特區域的時鐘信號偽帶內噪聲和雜散,正如其出現在輸入信號時表現的那樣。因此,如果時鐘輸入的相位噪聲不受頻帶限制,同時沒有高頻規律性衰減,則整合上限由變壓器(如果使用的話)帶寬和 ADC 自身的時鐘輸入設定。一些情況下,時鐘輸入帶寬可以非常大;例如,ADS54RF63 具有 ~2 GHz 的時鐘輸入帶寬,旨在允許高時鐘轉換速率的高階諧波。

若想要驗證時鐘相位噪聲是否需要整合至時鐘輸入帶寬,則需建立另一個實驗。ADS54RF63 再次工作在 122.88 MSPS,其輸入信號為 1GHz,以確保 SNR 抖動得到控制。我們利用一個 RF 放大器,生成 50MHz 到 1GHz 的寬帶白噪聲,并將其添加至采樣時鐘,如圖 9 所示。之后,我們使用幾個不同低通濾波器 (LPF) 來限制添加至時鐘信號的噪聲量。

ADS54RF63 的時鐘輸入帶寬為 ~2 GHz,但由于 RF 放大器和變壓器都具有 ~1 GHz 的 3-dB帶寬,因此有效 3-dB 時鐘輸入帶寬被降低至 ~500 MHz。“表 2”所示測得 SNR 結果證實,就本裝置而言,實際時鐘輸入帶寬約為 500MHz。圖 10 所示 FFT 對比圖進一步證實了 RF 放大器的寬帶噪聲限制了噪聲層,并降低了 SNR。

該實驗表明,時鐘相位噪聲必需非常低或者帶寬有限,較為理想的情況是通過一個很窄的帶通濾波器。否則,由系統時鐘帶寬設定的整合上限會極大降低 ADC 的 SNR。



 
結論

本文介紹了如何準確地估算采樣時鐘抖動,以及如何計算正確的上下整合邊界。“第 2 部分”將會介紹如何使用這種估算方法來推導 ADC 的 SNR,以及所得結果與實際測量結果的對比情況。

要采購濾波器么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡
国产成人午夜精品5599| 91久久奴性调教| 91免费视频观看| www精品美女久久久tv| 亚洲精品写真福利| 国产在线一区观看| 欧美一区二区三区视频免费| 亚洲品质自拍视频| 成人av电影在线网| 久久久另类综合| 视频一区国产视频| 欧美专区日韩专区| 综合欧美一区二区三区| 粉嫩高潮美女一区二区三区 | 欧美videos大乳护士334| 中文字幕一区二区三区视频| 激情小说欧美图片| 亚洲精品一线二线三线无人区| 亚洲精品中文在线| 91视频国产资源| 亚洲欧美在线视频观看| av成人老司机| 亚洲日本在线a| 一本大道av伊人久久综合| 久久久另类综合| 国产精品正在播放| 精品国产凹凸成av人网站| 日韩精品亚洲一区二区三区免费| 欧美日韩一区二区三区在线看| 一区二区三区免费观看| 欧美亚洲丝袜传媒另类| 亚洲国产精品一区二区www在线| 91国产福利在线| 亚洲成人一区二区| 6080日韩午夜伦伦午夜伦| 日韩精品一二区| 日韩欧美一区二区在线视频| 麻豆精品一区二区三区| 久久久亚洲精品一区二区三区 | 精品国产99国产精品| 久久99精品国产麻豆婷婷洗澡| 欧美一级在线免费| 黄色精品一二区| 亚洲国产成人自拍| 91视频在线观看免费| 亚洲一区二区三区美女| 欧美精品一卡二卡| 六月丁香综合在线视频| 国产午夜精品美女毛片视频| 成人动漫一区二区三区| 一区二区在线观看视频| 69久久夜色精品国产69蝌蚪网| 久久66热re国产| 综合自拍亚洲综合图不卡区| 欧美日韩精品一区二区在线播放| 久久精品99国产精品| 国产色产综合色产在线视频| 色欧美片视频在线观看在线视频| 三级一区在线视频先锋 | 一区二区免费看| 日韩欧美另类在线| 不卡在线观看av| 石原莉奈在线亚洲二区| 国产午夜亚洲精品理论片色戒 | 热久久国产精品| 亚洲国产精品国自产拍av| 欧美日韩亚州综合| 国产精品白丝jk白祙喷水网站| 中文字幕亚洲一区二区av在线| 这里只有精品电影| 成人蜜臀av电影| 蜜臀91精品一区二区三区| 中文字幕欧美一区| 欧美不卡一区二区三区| 91官网在线观看| 高清成人免费视频| 日韩成人免费电影| 国产精品亲子伦对白| 日韩手机在线导航| 色综合久久中文综合久久牛| 久久成人精品无人区| 亚洲一区二区在线视频| 国产偷国产偷亚洲高清人白洁| 欧美久久久影院| av电影天堂一区二区在线| 国产一区二区美女诱惑| 日韩精品欧美精品| 亚洲午夜激情网站| 亚洲精品精品亚洲| 中文字幕av一区 二区| 久久一夜天堂av一区二区三区| 欧美日韩专区在线| 在线亚洲精品福利网址导航| 成人97人人超碰人人99| 国产一区二区三区精品欧美日韩一区二区三区| 亚洲一级片在线观看| 中文字幕一区二区三区蜜月| 2021国产精品久久精品| 欧美一区欧美二区| 9191精品国产综合久久久久久| 91精品福利视频| 色诱视频网站一区| 不卡视频在线看| 成人国产精品免费观看| 风间由美性色一区二区三区| 国产成人午夜精品5599| 国产在线播放一区三区四| 久久国产精品区| 麻豆国产欧美日韩综合精品二区| 日本亚洲欧美天堂免费| 日本伊人色综合网| 久久99精品久久久久久国产越南 | 91女人视频在线观看| 成人app软件下载大全免费| 成人在线视频一区| 成人av网址在线观看| 91免费看视频| 在线观看日韩毛片| 欧美日韩aaaaaa| 欧美一区二区网站| 精品国产一二三| 国产欧美日韩不卡| 亚洲人妖av一区二区| 亚洲综合激情网| 石原莉奈在线亚洲二区| 日本亚洲免费观看| 国产在线日韩欧美| 成人91在线观看| 欧洲色大大久久| 日韩美女视频在线| 亚洲国产精品成人综合色在线婷婷| 中文字幕一区二区三区av| 一区二区三区日韩在线观看| 婷婷久久综合九色综合伊人色| 免费在线一区观看| 成人免费毛片高清视频| 欧美午夜在线观看| 精品国产91九色蝌蚪| 国产精品入口麻豆原神| 亚洲国产aⅴ天堂久久| 免费不卡在线观看| 不卡视频一二三四| 欧美日韩精品电影| 国产日产亚洲精品系列| 亚洲一区二区三区四区五区中文| 免费观看久久久4p| 99久久久久久| 亚洲精品在线三区| 亚洲免费观看高清完整版在线观看熊 | 九九视频精品免费| 99久久国产综合色|国产精品| 欧美另类一区二区三区| 国产欧美1区2区3区| 亚洲国产综合色| 国产传媒日韩欧美成人| 欧美精品久久久久久久久老牛影院| 欧美—级在线免费片| 日本视频在线一区| 91理论电影在线观看| 久久人人爽爽爽人久久久| 亚洲一区二区视频| 不卡的av中国片| 2022国产精品视频| 婷婷六月综合亚洲| 91福利社在线观看| 国产精品人成在线观看免费| 免费看欧美美女黄的网站| 色婷婷激情综合| 国产精品乱码久久久久久| 久久99国产精品成人| 在线不卡欧美精品一区二区三区| 国产精品色婷婷| 国产一区在线观看麻豆| 欧美一级二级在线观看| 亚洲国产裸拍裸体视频在线观看乱了| 国产成人一级电影| 久久综合给合久久狠狠狠97色69| 亚洲一区二区精品视频| 91在线免费视频观看| 欧美国产日本视频| 国产自产视频一区二区三区| 欧美一区永久视频免费观看| 亚洲一区二区四区蜜桃| 欧美亚洲丝袜传媒另类| 亚洲欧美另类小说| 成人av小说网| 国产精品电影一区二区| 懂色av一区二区三区免费观看| 2014亚洲片线观看视频免费| 精品一区二区日韩| 久久综合狠狠综合久久激情 | 首页国产丝袜综合| 欧美日韩精品一区二区三区四区| 一区二区三区国产精品| 日本道在线观看一区二区| 亚洲激情图片小说视频| 欧美视频中文字幕| 亚洲va国产va欧美va观看| 欧美美女激情18p| 青娱乐精品视频在线|