欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡

你的位置:首頁 > RF/微波 > 正文

『這個知識不太冷』探索5G射頻技術(上)

發布時間:2023-11-12 來源:Qorvo半導體 責任編輯:lina

【導讀】『這個知識不太冷』系列,旨在幫助小伙伴們喚醒知識的記憶,將挑選一部分Qorvo劃重點的知識點,結合產業現狀解讀,以此溫故知新、查漏補缺。接下來,我們談一談5G射頻。


『這個知識不太冷』系列,旨在幫助小伙伴們喚醒知識的記憶,將挑選一部分Qorvo劃重點的知識點,結合產業現狀解讀,以此溫故知新、查漏補缺。接下來,我們談一談5G射頻。


本文(上篇)將講解5G NR的部分技術方面,以便您能理解那些背后的技術。后續推送的下篇將介紹射頻前端(RFFE)背后的一些特征和技術。


深入了解5G NR


現在,您可能對5G已有基本認識,下面讓我們再深入一些,了解5G的支持技術。5G的骨干技術如下:

? 頻譜技術
? 動態頻譜共享技術
? 擴展正交頻分復用技術(OFDM), 一種將更多數字數據編碼到多個載波頻率的方法。
? 多進多出技術(MIMO),其中包括同時利用多個天線的技術,以提高數據速度和減少誤差。
? 波束賦形技術,將來自多個天線的射頻信號合并成一個指向特定設備或接收器的強信號。
? 小蜂窩技術或網絡密致化技術,將多個蜂窩站點密集放置,以提高可用容量。


另外,這些技術還將顯著強化現有的4G LTE網絡,提高網絡靈活性、伸縮性和效率。其中部分技術(如5G頻譜)已在前文講解,其他幾項技術我們將在以下各節分別講解。


#頻譜與動態頻譜共享#


前文提到,為滿足增強型移動寬帶(eMBB)的需求(例如:1Gbps或以上的數據率速度,以及采納用戶設備所需的數據率),頻譜與動態頻譜共享是兩項必需的技術。


相對于4G LTE ,5G顯著提高了數據率。不過,5G的大部分優勢都源于新的5G頻帶所獲得的帶寬增強,只有少部分數據吞吐量的提高是因為實施了5G NR技術。如您所見,頻譜的增加給下行鏈路的數據率帶來指數級增長,而載波聚合與5G NR技術升級僅貢獻19%的增長。


『這個知識不太冷』探索5G射頻技術(上)

4G LTE與5G NR下載鏈路數據完善情況比較


#頻分復用(OFDM)#


在5G NR開發過程中,第一步是為5G NR設計物理層,其中波形是一個核心技術組成。在審查多個提案后,3GPP選擇擴展使用頻分復用技術,同時在上行鏈路和下行鏈路為5G添加循環前綴頻分復用(CP-OPDM)波型。


CP-OFDM技術利用多個平行窄帶子載波來傳輸信息,而不使用單個寬帶載波。該技術定義充分,已在4G LTE下行鏈路和Wi-Fi通信標準成功實施,因此也適合用于5G NR設計。


不過,5G NR上行鏈路還提供了一種不同的波形格式,這種波形格式類似4G LTE上行鏈路使用的波形模式離散傅立葉變換擴頻正交頻分復用(DFT-S-OFDM)波形。DFT-S-OFDM波形是一種4G采用的波形,結合了循環前綴正交頻分復用和低峰均比(PAPR)的優點。DFT-S-OFDM波形對上行鏈路有幫助,對于高功率的2級功率應用或者當用戶設備位于基站蜂窩的邊緣位置,遠離信號塔時,DFT-S-OFDM可能是首選波形。


在靈活性上,5G NR提供的子載波間隔方案還超越了LET提供的固定15kHz子載波間隔。5G NR提供的子載波間隔包括FR2,最大間隔達到240kHz。靈活的載波間隔可用于適當支持5G NR所需的多元化頻帶、頻譜類型及部署模式。


DFT-S-OFDM非常類似于LTE上行鏈路使用的單頻分復用接入(SCFDMA),CP-OFDM非常類似于LTE下行鏈路使用的正交頻分復用接入(OFDMA)。3GPP之所以選擇CP-OFDM,原因如下:

? CP-OFDM能夠面向復雜程度較低的接收器延展。
? 在一些最重要的5G性能指標上(例如:與多天線技術的兼容性),CP-OFDM排名最高。
? CP-OFDM的時域控制良好,這一點對于低延時關鍵應用和時分雙工(TDD)部署具有重要意義。
? 與其他波形相比,CP-OFDM對于相位噪聲和多普勒效應(頻率變化與波長變化)的耐受性更強。
? CP-OFDM在MIMO空間復用上的效率更高,這相當于提高了頻譜效率。
? 在大規范部署條件下,CP-OFDM非常適合上行鏈路傳輸。


#5G MIMO與大規模MIMO#


大規模MIMO技術是MIMO技術的擴展。MIMO技術有效地、重復地利用同一帶寬,以便傳輸更多數據,實現對頻譜更加高效的利用。


今天許多LTE MIMO基站都最多由八根天線組成,接收器上有一到二根天線。這使得基站能夠同時向8名用戶分別發送8條數據流;如果合二為 一,則能夠同時向4名用戶分別發送2條數據流。


隨著4G向大規模MIMO的轉移,天線數量出現指數增至多達16根、32根、64根、128根,甚至更多。這些天線的集合被稱為“天線陣列系統”(AAS)。這有助于通過波束賦形技術,將能量集中到較小的空間區域(參見下節),以極大改善吞吐量和輻射能量效率。


大規模MIMO有助于:
? 防止在非理想方向上傳輸數據,減輕干涉
? 減少延時,從而提高速度和可靠性
? 減少通知和連接的衰落與掉線
? 同時服務大規模用戶群
? 推出二維波束賦形


大規模MIMO不僅能夠增加蜂窩容量和蜂窩效率,還能利用銳利天線波束方向圖(由多個天線元素組成)平行發送和接收射頻信號。在采用大規模MIMO技術的基站,每條數據流都有獨特的輻射方向圖,因此不會相互干涉。每條數據流的信號強度都按照目標用戶設備的方向傳送;在其他用戶設備的方向,信號強度則被減少,以降低干涉。


#波束賦形#


波束賦形技術對天線陣列中的單根天線的量級和相位進行適當加權,利用多根天線來控制波形的傳送方向,為5G帶來顯著優勢。由于波束賦形技術是大規模MIMO系統使用的一項技術,因此有時“波束賦形”與 “大規模MIMO”這兩個術語可以互換使用。


波束賦形技術被用于毫米波頻譜,基本頻率在24GHz以上。該頻譜使用的是200至400MHz的寬信道帶寬,因此提供了超高的數據傳輸速度。承運商將使用該技術部署5G固定無線接入服務(FWA),作為“最后一英里”連接解決方案,為家庭和企業提供高速連接。


固定無線接入毫米波有一個缺點:雨、植物或建筑物等,都可能造成毫米波信號衰減。在這些情況下,有時候難以保持用戶設備處于視距范圍,因此會造成信號延遲、衰減以及到達信號發生變化。不過,波束賦形技術有助于減少這些負面效果。通過利用大規模MIMO和波束賦形技術帶來的多條路徑,即使在視距受限的情況下,也可以對天線元素與用戶設備之間的空間信道進行定性及數字化編碼和解碼,從而有助于減少信號損失。



『這個知識不太冷』探索5G射頻技術(上)


大規模MIMO與波束賦形


#網絡密致化#


今天,無線基礎設施網絡包含眾多元素,有大蜂窩基站、地鐵蜂窩基站,還有室內外分布式天線系統和小蜂窩基站。這些元素在異質網絡(HetNet)環境下共同工作,如下圖所示。


『這個知識不太冷』探索5G射頻技術(上)

無線基礎設施異質網絡與小蜂窩基站集成


所謂“密致化”,是一種通過增強蜂窩站點,提高可用蜂窩容量的技術。這種蜂窩可以是微蜂窩或小蜂窩, 以應對網絡容量緊張的區域。另外,這些蜂窩還可以分擔周邊大基站和微基站的通信流量。

小蜂窩基站是一種將蜂窩基站拆分成更小型群組的迷你基站。另外,還可根據覆蓋面積的大小,細分為皮蜂窩基站、微蜂窩基站和飛蜂窩基站,并且這些基站既可以設在室內,也可以設在室外。



『這個知識不太冷』探索5G射頻技術(上)


微蜂窩基站與小蜂窩基站之間存在重要區別。微蜂窩基站有一條大型數據管道通向網絡。小蜂窩基站則將這條管道拆分成覆蓋一定區域的多條小型管道。小蜂窩基站的主要目標是提高大蜂窩基站的邊緣數據容量或 者覆蓋大蜂窩不能覆蓋的區域(覆蓋不良) ,最終目標是完善數據、速度和網絡效率。下圖所示為小蜂窩集成網絡。


『這個知識不太冷』探索5G射頻技術(上)

小蜂窩集成網絡


小蜂窩:
? 提高數據容量,尤其是高端購物區或城市中心區等高度稠密的區域。
? 消除了高成本的屋頂系統和設備或租用成本。
? 提高了手機性能。


在討論密致化與小蜂窩基站時,我們需要考慮物聯網設備使用多種無線技術進行連接。小蜂窩基站的實施以及眾多設備的互聯,將構成大規模、超可靠、低延時機械類通信(MTC)的一個關鍵方面。

物聯網的傳輸類型大致分為以下四種:
? 有線傳輸
? 中短距離無線傳輸(從藍牙到網狀網絡Wi-Fi、ZigBee)
? 長距離無線傳輸(4G LTE和5G蜂窩),低功率廣域網(LPWAN)
? 衛星傳輸


5G將可實現大規模物聯網, 大規模物聯網能夠支持數百億個設備、物品和機器,并且這些設備都需要連接無處不在。這些設備可以是移動設備、漫游設備,還可以是固定設備。


#5G NR頻譜載波聚合#


“載波聚合”是一種將兩個以上載波合并成一條數據信道, 以增加數據容量的技術。通過利用現有網絡頻譜,載波聚合技術讓運營商能夠提供更高的上行鏈路和下行鏈路數據率,因此能夠提高網絡性能和確保高質量用戶體驗。載波聚合為4G提高用戶數據吞吐量做出重要貢獻,并且還將在5G起到同樣重要的作用。為了增加容量,全球運營商都在積極地添加載波聚合頻帶和功能(例如:MIMO)。


相關命名慣例因為5G頻帶而發生改變。5G命名重新加入字母“n”(即n77或n78),用以指代“New Radio”(即新空口);而4G命名則使用字母“B”指代“頻帶”。5G NR使用的LTE頻帶仍將使用相同的頻帶編號,只是增加了n標識符。



『這個知識不太冷』探索5G射頻技術(上)


5G載波聚合將提供帶有非對稱上下載功能的多重連接能力,并且在毫米波頻率提供高達700MHz的信道帶寬。在7GHz以下頻帶,可以利用4條100MHz信道,實現400MHz瞬時帶寬。


在頻分雙工(FDD)或時分雙工(TDD)條件下,每條分量載波能夠獲得1.4MHz、3MHz、5MHz、10MHz、15MHz或20MHz帶寬。因此,如果有5條20MHz分量載波,那么利用載波聚合,最高可以實現100MHz帶寬。在時分雙工條件下,分量載波的帶寬和數量必須在上下行鏈路保持相同。4G LTE-Advanced Pro能夠提供最高100MHz帶寬,支持32條分量載波,因此最高帶寬可以達到640MHz。于是在5G NR條件下,還有另外一個載波聚合方案,該方案被稱為“雙重連接”,能夠聚合4G LTE和5G NR頻帶。

文章來源:Qorvo半導體


免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


推薦閱讀:

了解鎖相放大器的類型和相關噪聲源

專用 DC/DC 轉換器應對鐵路供電的獨特挑戰

什么是去耦電容器?

按特定順序堆疊5層石墨烯,鉛筆芯巧變電子“黃金”

瑞薩公開下一代車用SoC和MCU處理器產品路線圖


特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索

關閉

?

關閉

欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡
欧美成人精品福利| 国产精品自在在线| 最新久久zyz资源站| 欧美日韩精品欧美日韩精品一| 国产一区二三区| 国产精品一线二线三线精华| 亚洲福利一二三区| 日韩二区在线观看| 久久99精品久久久久久国产越南| 午夜精品久久久久久久| 亚洲国产精品久久人人爱蜜臀| 中文字幕一区日韩精品欧美| 26uuu精品一区二区三区四区在线| 3d动漫精品啪啪一区二区竹菊| 欧美无砖专区一中文字| 色偷偷成人一区二区三区91| 国产成人综合精品三级| 国产精品99久久久久久似苏梦涵| 国产一区二区三区久久久| 精品在线观看视频| 国产aⅴ综合色| 91丝袜呻吟高潮美腿白嫩在线观看| 成人a区在线观看| 欧美无乱码久久久免费午夜一区| 欧洲国内综合视频| 精品国产一区二区三区不卡| 欧美大片在线观看| 综合欧美一区二区三区| 亚洲第一搞黄网站| 国产精品456露脸| 欧美绝品在线观看成人午夜影视| 69久久99精品久久久久婷婷| 666欧美在线视频| 国产精品亲子乱子伦xxxx裸| 国产偷国产偷亚洲高清人白洁| 中文字幕一区在线观看视频| 中文字幕日韩一区| 免费成人在线观看| 欧亚洲嫩模精品一区三区| 欧美一区二区三区系列电影| 欧美一区二区高清| 亚洲精品视频在线观看网站| 亚洲亚洲人成综合网络| 国产激情视频一区二区在线观看| 在线观看网站黄不卡| 欧美videos中文字幕| 国产精品国产三级国产| 蜜桃免费网站一区二区三区| 国产一区二区在线观看视频| 99视频在线精品| 久久久久国产免费免费| 亚洲电影一区二区| 91美女片黄在线观看91美女| 欧美日韩亚洲综合在线| 中文字幕一区二区三中文字幕| 日韩国产欧美在线视频| 99精品久久久久久| 国产女主播一区| 国产精品影音先锋| 亚洲精品一线二线三线无人区| 亚洲精品免费播放| 成人免费视频网站在线观看| 欧美精品色综合| 亚洲日本va在线观看| 国产成人av电影在线| 欧美一区二区视频免费观看| 中文一区二区在线观看| 久久se精品一区二区| 欧美丰满一区二区免费视频| 久久精品人人做人人综合| 久久99这里只有精品| 欧美精品黑人性xxxx| 一区二区三区在线视频免费 | 亚洲精品日产精品乱码不卡| 亚洲激情在线激情| 97精品电影院| 亚洲视频中文字幕| 色琪琪一区二区三区亚洲区| 国产亚洲欧美激情| av午夜一区麻豆| 一区二区三区不卡视频| 色老汉av一区二区三区| 亚洲区小说区图片区qvod| 成人三级在线视频| 一区二区欧美视频| 欧美老年两性高潮| 国产一区在线看| 国产精品乱人伦| 色网综合在线观看| 日韩精品电影在线观看| 欧美一区二区三区视频| 蜜臀国产一区二区三区在线播放| 日韩三级伦理片妻子的秘密按摩| 九色综合狠狠综合久久| 国产欧美日韩久久| 91国内精品野花午夜精品| 亚洲一二三区视频在线观看| 色婷婷国产精品| 激情综合五月天| 亚洲欧美在线视频观看| 欧洲av在线精品| 国产精品一二三四区| 国产精品网友自拍| 91精品黄色片免费大全| 国产精品亚洲一区二区三区妖精 | 国产美女精品在线| 亚洲色图.com| 欧美一区二区三区在线观看视频| 国产在线一区观看| 樱桃视频在线观看一区| 日韩欧美久久久| 色视频欧美一区二区三区| 喷水一区二区三区| 国产精品不卡视频| 精品国产自在久精品国产| 国产成人精品影院| 日韩国产欧美三级| 亚洲品质自拍视频网站| 欧美一区二区三区视频免费播放| 成人av动漫在线| 久久99精品久久久| 亚洲成人三级小说| 亚洲黄色av一区| 国产精品久久久爽爽爽麻豆色哟哟 | 欧美一区二区三区小说| 99热99精品| 国产精品中文欧美| 久久电影网电视剧免费观看| 国产欧美日韩中文久久| 欧美乱妇一区二区三区不卡视频 | 国产精品不卡在线观看| 日韩写真欧美这视频| 欧美亚日韩国产aⅴ精品中极品| 国产乱码一区二区三区| 亚洲国产aⅴ成人精品无吗| 国产香蕉久久精品综合网| 91精品国产品国语在线不卡| 国产 日韩 欧美大片| 美女视频黄 久久| 日本v片在线高清不卡在线观看| 亚洲桃色在线一区| 亚洲欧洲国产日韩| 亚洲视频在线观看一区| 国产三级一区二区三区| 日韩精品中文字幕一区二区三区| 欧洲精品在线观看| 欧美无砖砖区免费| 欧美日韩成人激情| 91精品国产福利在线观看| 欧美色视频在线| 欧美日韩亚洲综合在线| 91成人免费在线| 欧美日韩中文字幕一区二区| 成人精品免费看| 成人av网站在线观看免费| 国产福利一区在线| 91污在线观看| 在线看国产日韩| 欧美久久久久久蜜桃| 欧美丰满少妇xxxbbb| 日韩欧美黄色影院| 国产网站一区二区| 亚洲精品国产精品乱码不99| 国产精品女同互慰在线看| 中文字幕欧美三区| 一区二区高清视频在线观看| 国产精品动漫网站| 天堂蜜桃一区二区三区| 日本中文一区二区三区| 理论片日本一区| 成人免费视频视频在线观看免费 | 国产成人精品三级| 色av一区二区| 91精品国产福利在线观看| 精品久久久久一区二区国产| 日韩欧美在线123| 国产精品天天摸av网| 日韩码欧中文字| 麻豆freexxxx性91精品| 国产精品正在播放| 欧美日韩精品系列| 欧美国产日韩在线观看| 亚洲高清免费在线| 成人午夜私人影院| 欧美日韩国产乱码电影| 欧美成人免费网站| 亚洲妇女屁股眼交7| 韩国成人福利片在线播放| 高清成人在线观看| 91麻豆精品国产91久久久久久 | 午夜伦理一区二区| 成人精品免费网站| 欧美精品一区视频| 亚洲成人福利片| 成人国产精品免费网站| 欧美亚洲丝袜传媒另类| 欧美成人官网二区| 午夜久久电影网| 91蝌蚪porny九色| 欧美韩国日本综合|