欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡

你的位置:首頁 > 電源管理 > 正文

如何消除步進電機的噪音和振動?

發布時間:2023-08-21 責任編輯:lina

【導讀】由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。


步進電機的噪音來自哪里?

由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。

步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。

步距角分辨率和細分

典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。

一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。


4-0.gif
Figure 1: Full-step operation

步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 2: Half-step operation


低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 3: Pendulum behavior of the rotor leads to vibrations


在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。

電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 4: Reduction of motor vibrations when switching from full-step

to high microstep resolutions


斬波和PWM模式

噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。

傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is
not equal to target current


在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。

相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。

這一點在電機從靜止或低速到中速過程中非常重要。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 6: Zero-crossing plateau with classic of-time chopper modes


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 7: SpreadCycle hysteresis chopper with clean zero crossing


如何使步進電機實現完全的靜音?

盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。

T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。

TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。

圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode

步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode


StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。

這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。

除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 10: Zoomed-in PWM view of both motor phases and coil current
with voltage-controlled StealthChopTM  chopper mode


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 11: Zoomed-in PWM view of both motor phases and coil current
with current-controlled SpreadCycleTM  chopper mode


對步進電機來說改變了什么?

如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。

但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。

StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。

TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。

下載本文:如何消除步進電機的噪音和振動?


免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


推薦閱讀:

適用于高性能功率器件的 SiC 隔離解決方案

REASUNOS瑞森半導體碳化硅二極管在大功率電源上的應用

使用FPGA實現自適應全陣列局部調光解決方案

集成穩壓器消除了對分立元件的需求

180 W 功率因數校正電源


特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索

關閉

?

關閉

欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡
国产精品18久久久久久久网站| 中文字幕av一区 二区| 久久不见久久见免费视频1| 日本欧美大码aⅴ在线播放| 一区二区三区国产豹纹内裤在线 | 日韩欧美视频在线| 3d动漫精品啪啪| 51午夜精品国产| 日韩欧美国产一二三区| 精品久久久久久最新网址| 日韩一区二区三| 久久精品夜夜夜夜久久| 国产精品久久久久久久久久久免费看 | 豆国产96在线|亚洲| 国产一区二区三区免费观看| 国产成人日日夜夜| 91在线国产观看| 精品视频一区 二区 三区| 欧美一二三四区在线| 国产日韩欧美综合在线| 亚洲欧美色图小说| 午夜精品福利一区二区三区av | 最新国产の精品合集bt伙计| 亚洲欧洲性图库| 一二三区精品视频| 激情另类小说区图片区视频区| 国产一区二区女| 色婷婷综合久久久| 日韩一二三区视频| 国产精品动漫网站| 日韩精品国产精品| 高清在线观看日韩| 国产欧美日韩在线看| 国产精品久久久久9999吃药| 亚洲色图制服丝袜| 蜜桃久久精品一区二区| 成人激情免费网站| 678五月天丁香亚洲综合网| 国产蜜臀av在线一区二区三区| 亚洲欧美成aⅴ人在线观看| 青青草伊人久久| 成人精品免费网站| 欧美一级欧美三级在线观看| 国产精品乱码人人做人人爱 | 日本韩国精品在线| 精品欧美乱码久久久久久1区2区| 国产精品麻豆视频| 国产综合色在线视频区| 欧美视频在线一区二区三区| 久久精品夜色噜噜亚洲aⅴ| 日韩主播视频在线| 色天天综合久久久久综合片| 欧美精品一区二区蜜臀亚洲| 亚洲国产成人porn| 91亚洲国产成人精品一区二区三| 精品88久久久久88久久久 | 欧美精品在线视频| 成人免费小视频| 国产精品88av| 亚洲精品一区在线观看| 亚洲va韩国va欧美va| 成人av资源在线观看| 久久综合九色综合欧美就去吻| 亚洲一区二区3| 91在线免费播放| 欧美国产欧美综合| 国产一区久久久| 精品国产一区久久| 免费在线成人网| 欧美一级xxx| 免费成人深夜小野草| 欧美一区二区三区公司| 午夜视频一区在线观看| 欧美日韩国产在线观看| 亚洲大型综合色站| 欧美久久久久久久久中文字幕| 亚洲一区在线观看免费观看电影高清| 99亚偷拍自图区亚洲| 国产精品久久久久久久久动漫| 丁香另类激情小说| 国产精品久久久久一区| www.日韩在线| 亚洲另类中文字| 色哟哟一区二区| 亚洲va韩国va欧美va精品| 欧美另类一区二区三区| 久久超碰97中文字幕| 久久综合视频网| 成人免费视频免费观看| 亚洲欧美成人一区二区三区| 欧美在线观看视频一区二区三区| 一二三四区精品视频| 91精品蜜臀在线一区尤物| 精品一区二区三区在线观看| 久久精品一区二区三区四区| 92国产精品观看| 午夜欧美2019年伦理| 日韩精品中文字幕一区| 国产福利精品一区二区| 一区二区三区**美女毛片| 欧美日韩精品综合在线| 国产九色sp调教91| 亚洲色欲色欲www| 91精品久久久久久蜜臀| 成人av在线一区二区三区| 亚洲www啪成人一区二区麻豆| 精品久久久网站| 91久久一区二区| 美女视频黄a大片欧美| 国产精品三级在线观看| 欧美日韩日日夜夜| 国产69精品一区二区亚洲孕妇| 亚洲综合色丁香婷婷六月图片| 精品国产人成亚洲区| 色狠狠av一区二区三区| 国产在线看一区| 亚洲成人久久影院| 国产欧美日韩三区| 日韩一区二区三区四区| 色综合天天综合在线视频| 国产综合色在线| 天堂久久久久va久久久久| 国产精品女上位| 精品国产免费人成在线观看| 在线精品视频免费观看| 国产成人欧美日韩在线电影 | 久久久91精品国产一区二区精品| 91成人网在线| youjizz久久| 国产精品一区二区免费不卡| 首页国产欧美久久| 亚洲精品日日夜夜| 国产精品久久久久一区| 久久久久久久久久久黄色| 欧美精选午夜久久久乱码6080| 一本久道久久综合中文字幕| 国产成人在线电影| 美女在线视频一区| 亚洲国产精品久久人人爱| 中文字幕中文字幕一区| 国产片一区二区| 久久嫩草精品久久久久| 欧美成人女星排行榜| 欧美另类videos死尸| 色综合久久久网| 91视频国产观看| 99亚偷拍自图区亚洲| 成人不卡免费av| 成人一区二区三区视频在线观看| 国产一区二区视频在线| 国产一区二区电影| 国产伦精一区二区三区| 国产91丝袜在线观看| 国产精品一区二区黑丝| 国产精品系列在线观看| 成人中文字幕电影| 粉嫩av一区二区三区粉嫩| 成人永久aaa| 99精品热视频| 色欧美乱欧美15图片| 欧美性极品少妇| 日韩欧美视频一区| 久久精品人人做人人综合| 国产精品久久二区二区| 亚洲天堂中文字幕| 亚洲精品视频在线看| 亚洲国产一区二区在线播放| 午夜精品免费在线观看| 美腿丝袜亚洲一区| 国产盗摄女厕一区二区三区| 国产精品综合在线视频| 99麻豆久久久国产精品免费优播| 色综合天天做天天爱| 欧美电影在线免费观看| 久久精品亚洲麻豆av一区二区| 国产精品国产三级国产| 亚洲成人午夜影院| 国产一区二区看久久| 91浏览器入口在线观看| 91精品国产综合久久福利软件| 久久夜色精品一区| 亚洲欧洲制服丝袜| 日韩电影在线免费| 99久久国产综合色|国产精品| 欧洲精品视频在线观看| 欧美不卡在线视频| 最近日韩中文字幕| 日本不卡免费在线视频| 成人毛片视频在线观看| 欧美一区二区精品在线| 中文字幕一区二区三区蜜月| 日韩激情在线观看| 99久久精品99国产精品| 日韩午夜在线影院| 亚洲五码中文字幕| 成人永久免费视频| 2020国产精品| 日韩电影在线一区二区| 欧美影视一区二区三区| 2017欧美狠狠色|