欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡

你的位置:首頁 > 電源管理 > 正文

反激式開關電源的變壓器電磁兼容性設計

發布時間:2014-06-11 責任編輯:lefteye

[導讀]開關電源電路中的噪聲活躍節點是電路中的共模噪聲源。要降低開關電源的傳導干擾水平,實際上是減小共模電流強度、增大噪聲源的對地阻抗。本文以一款反激式開關電源為例,闡述了其傳導共模干擾的產生、傳播機理。根據噪聲活躍節點平衡的思想,提出了一種新的變壓器EMC設計方法。
 
隨著功率半導體器件技術的發展,開關電源高功率體積比和高效率的特性使得其在現代軍事、工業和商業等各級別的儀器設備中 得到廣泛應用,并且隨著時鐘頻率的不斷提高,設備的電磁兼容性(EMC)問題引起人們的廣泛關注。EMC設計已成為開關電源開發設計中必不可少的重要環節。
 
傳導電磁干擾(EMI)噪聲的抑制必須在產品開發初期就加以考慮。通常情況下,加裝電源線濾波器是抑制傳導EMI的必要措施[1]。但是,僅僅依靠電源輸入端的濾波器來抑制干擾往往會導致濾波器中元件的電感量增加和電容量增大。而電感量的增加使體積增加;電容量的增大受到漏電流安全標準的限制。電路中的其他部分如果設計恰當也可以完成與濾波器相似的工作。本文提出了變壓器的噪聲活躍節點相位干燥繞法,這種設計方法不僅能減少電源線濾波器的體積,還能降低成本。
 
反激式開關電源的共模傳導干擾
 
電子設備的傳導噪聲干擾指的是:設備在與供電電網連接工作時以噪聲電流的形式通過電源線傳導到公共電網環境中去的電磁干擾。傳導干擾分為共模干擾與差模干擾 兩種。共模干擾電流在零線與相線上的相位相等;差模干擾電流在零線與相線上的相位相反。差模干擾對總體傳導干擾的貢獻較小,且主要集中在噪聲頻譜低頻端, 較容易抑制;共模干擾對傳導干擾的貢獻較大,且主要處在噪聲頻譜的中頻和高頻頻段。對共模傳導干擾的抑制是電子設備傳導EMC設計中的難點,也是最主要的 任務。
反激式開關電源的電路中存在一些電壓劇變的節點。和電路中其他電勢相對穩定的節點不同,這些節點的電壓包含高強度的高頻成分[2]。 這些電壓變化十分活躍的節點稱為噪聲活躍節點。噪聲活躍節點是開關電源電路中的共模傳導干擾源,它作用于電路中的對地雜散電容就產生共模噪聲電流ICM 。而電路中對EMI影響較大的對地雜散電容有:功率開關管的漏極對地的寄生電容Cde,變壓器的主邊繞組對副邊繞組的寄生電容Cpa;變壓器的副邊回路對地的寄生電容Cae, 變壓器主、副邊繞組對磁芯的寄生電容Cpc、Cac 以及變壓器磁芯對地的寄生電容Cce這些寄生電容在電路中的分布如圖1所示。
共模噪聲電流在電路中的耦合途徑
圖1、共模噪聲電流在電路中的耦合途徑
 
圖1中的共模電流ICM在電路中的耦合途徑主要有3條:從噪聲源—— 功率開關管的d極通過Cde耦合到地;從噪聲源通過Cpa耦合到變壓器次級電路,再通過Cae 耦合到地;從變壓器的前、次級線圈通過Cpc、Cac 耦合到變壓器磁芯,再通過Cce 耦合到地。這3種電流是構成共模噪聲電流(圖1中的黑色箭頭所示)的主要因素。共模電流通過電源線輸入端的地線回流,從而被LISN取樣測量得到。
[page]
隔離變壓器的EMC設計
 
共模噪聲的耦合除了通過場效應管d極對地這條途徑外,開關管d極的噪聲電壓通過變壓器的寄生電容將噪聲電流耦合到變壓器副邊繞組所在的回路,再通過次級回路對地的寄生電容耦合到地也是共模電流產生的途徑。因此設法減小從變壓器主邊繞組傳遞到副邊繞組間的共模電流是一種有效的EMC設計方法。傳統的變壓器 EMC設計方法是在兩繞組間添加隔離層[3],如圖2所示。
變壓器隔離層對噪聲電流的影響
圖2、變壓器隔離層對噪聲電流的影響
 
金屬隔離層直接連接地線的設計會增大共模噪聲電流,使EMC性能變差。隔離層應該是電路中電位穩定的節點,比如將圖2中的隔離層連接到電路前級的負極就是一個很好的接法。這樣的連接能把原本流向大地的共模電流有效分流,從而大大降低電源線的傳導噪聲發射水平。
在電路中,噪聲電壓活躍節點并不是單一的。以本文分析的電路為例:除功率開關管的d極外,變壓器前級繞組的另一端Uin 也是一個噪聲電壓活躍節點,而且節點電壓的變化方向與場管的d極電壓情況相反。所以變壓器次級繞組的兩端是相位相反的噪聲電壓活躍節點。圖3所示的是采用節點相位平衡法后,變壓器骨架上的線圈分布情況。
 
噪聲電流在變壓器內部的耦合情況
圖3、噪聲電流在變壓器內部的耦合情況
 
變壓器骨架最內層是前級繞組線圈的一半,與功率開關管的d極相連;中間層的線圈是次級繞組;最外層是前級繞組的另一半,與節點Uin相連。由于噪聲電流主要通過前后級線圈層之間的寄生電容耦合,把前、后級線圈方向相反的噪聲活躍節點成對地繞在內外層相對位置就能使大部分的噪聲電流相互抵消,大大降低了最終耦合到次級的噪聲電流的強度。
 
本文討論的電路中還存在前級電路和次級電路的輔助電源,它們也是由繞在變壓器上的獨立線圈提供能量的。這兩級輔助線圈的存在給噪聲電流的傳播提供了額外的途 徑。輔助線圈是為了控制電路的供電設計的。盡管控制電路本身的功率很小,但它們的存在卻增大了電路對地的寄生電容,從而分擔了一部分把共模噪聲從活躍節點 耦合到地的工作。然而把這些繞組夾在前級線圈和次級線圈的繞組中間就能增大前后級繞組的距離,從而它們的層間寄生電容就減小了,噪聲電流就能相應減小。因 此,變壓器繞制的最終方法應如圖4所示。從內到外的線圈繞組依次是:前級繞組的一半、輔助繞組的一半、后級繞組、輔助繞組的另一半和前級繞組的另一半。
 
解決方案的實驗驗證
 
變壓器改進繞法對開關電源的傳導EMC性能提高的有效性可以通過實驗得到驗證。
實驗按照文獻[4]中的電壓法進行。頻段范圍為0.15~30 MHz;頻譜分析儀的檢波方式為準峰值檢波;測量帶寬為9 kHz;頻譜橫軸(頻率)取對數形式;噪聲信號的單位為dBμV[5]。
 變壓器改進繞法細節
圖4、變壓器改進繞法細節
 
[page]
圖5為變壓器設計改進前后實驗樣品的傳導噪聲頻譜對比。
變壓器設計改進前后的噪聲頻譜
圖5、變壓器設計改進前后的噪聲頻譜
 
圖5中的上下兩條平行折線分別為國際無線電干擾特別委員會(簡稱CISPR)頒布的CISPR22標準中b級要求的準峰值檢波限值和平均值檢波限值;而曲線 為開關電源的傳導噪聲頻譜。從實驗結果可以看出:與傳統方法相比,新方法有著更出色的對共模噪聲電流的抑制能力,尤其在中頻1~5MHz的頻段。在較低頻 段,電源線上的傳導干擾主要是差模電流引起的;而在中高頻段,共模電流起主要作用。而本文提出的方法對共模電流的抑制較強,實驗和理論是相符合的。在10 MHz以上的頻段,主要由電路中的其他寄生參數決定EMC性能,與變壓器關系不大。
 
結束語
開關電源電路中的噪聲活躍節點是電路中的共模噪聲源。要降低開關電源的傳導干擾水平,實際上是減小共模電流強度、增大噪聲源的對地阻抗。在傳統的隔離式EMC設計中,隔離層連接到電路中電位穩定的節點上(如:變壓器前級的負極)要比直接連到地線對EMI干擾的抑制更有效。
 
開關電源電路中的噪聲活躍節點通常都是成對存在的,這些成對節點之間的相位相反,利用這一特點活躍節點相位平衡繞法對EMI抑制的有效性高于傳統的隔離式設計。由于不需要添加隔離金屬層,變壓器的體積與成本都能被有效減小或降低。
 
要采購變壓器么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡
91精品欧美一区二区三区综合在 | 日本网站在线观看一区二区三区 | 久久久青草青青国产亚洲免观| 免费看日韩精品| 一区二区不卡在线播放 | 中文字幕一区二区三区乱码在线| 91福利精品第一导航| av在线综合网| 一本色道久久综合亚洲91| 偷偷要91色婷婷| 日韩专区一卡二卡| 美女看a上一区| 国产麻豆精品在线观看| 国产iv一区二区三区| 国产999精品久久| 亚洲一区二区av在线| 精品国精品国产尤物美女| 日韩欧美亚洲国产精品字幕久久久 | 玉足女爽爽91| www激情久久| 国产三级一区二区| 亚洲免费av网站| 婷婷久久综合九色综合伊人色| 国产精品午夜久久| 亚洲一级二级三级| 六月丁香婷婷久久| 91视频一区二区三区| 欧美偷拍一区二区| 欧美sm极限捆绑bd| 亚洲码国产岛国毛片在线| 日精品一区二区三区| 国产一区二区三区综合| 久久久不卡影院| 欧美日韩国产不卡| 精品国产免费一区二区三区四区| 91精彩视频在线| 精品少妇一区二区三区免费观看 | 国产成人精品免费一区二区| 色哟哟欧美精品| 精品成人免费观看| 日韩欧美你懂的| 亚洲欧美成人一区二区三区| 麻豆一区二区在线| 99精品黄色片免费大全| 日韩一区二区三区免费观看| 亚洲欧美怡红院| 1024国产精品| 国产一区二区看久久| 欧美日韩国产123区| 亚洲色欲色欲www在线观看| 精品一区二区三区香蕉蜜桃| 欧美在线一区二区三区| 国产拍欧美日韩视频二区| 久久亚洲精华国产精华液| 亚洲成人激情综合网| 99精品在线观看视频| 91网站在线播放| 久久久久久久网| 青娱乐精品视频| 欧美色偷偷大香| 欧美精品第一页| 夜夜嗨av一区二区三区网页| 国产成人自拍高清视频在线免费播放| 国产精品91一区二区| 欧美一级在线视频| 亚洲成av人影院在线观看网| 99国产精品99久久久久久| 国产欧美精品一区aⅴ影院 | 欧美婷婷六月丁香综合色| 欧美经典一区二区| 久久激情五月婷婷| 日韩欧美一区二区免费| 日韩av中文在线观看| 亚洲福中文字幕伊人影院| 色婷婷av一区| 亚洲一区二区欧美日韩| 欧美色中文字幕| 日韩电影在线免费观看| 91精品免费观看| 蜜桃视频在线一区| 久久九九国产精品| av一区二区久久| 亚洲免费观看高清完整版在线| 五月婷婷激情综合网| 91麻豆精品国产91久久久久久| 中文欧美字幕免费| 成人视屏免费看| 国产精品入口麻豆原神| 成人黄色在线网站| 亚洲精品中文字幕乱码三区 | 久久久久久久综合狠狠综合| 韩国精品免费视频| 国产精品毛片高清在线完整版| 日韩和的一区二区| 欧美电影免费观看高清完整版| 亚洲一区二区三区爽爽爽爽爽| 国产精品一区免费视频| 欧美激情资源网| 精油按摩中文字幕久久| 中文字幕av在线一区二区三区| 日韩主播视频在线| 国产午夜精品在线观看| 91小视频免费看| 免费av成人在线| 成人欧美一区二区三区视频网页| 美女脱光内衣内裤视频久久网站 | 大美女一区二区三区| 国产日韩影视精品| 欧美在线视频不卡| 国产原创一区二区| 亚洲综合色丁香婷婷六月图片| 国产精品一品二品| 亚洲综合一区在线| 337p粉嫩大胆色噜噜噜噜亚洲| 日韩精品成人一区二区三区| 欧美视频一区二区三区在线观看| 亚洲视频电影在线| 精品久久久久香蕉网| 欧日韩精品视频| 国产一区二区在线免费观看| 亚洲自拍偷拍网站| 国产女人18毛片水真多成人如厕| 九色综合国产一区二区三区| 一区二区三区高清不卡| 国产亚洲一区字幕| 欧美妇女性影城| 日本特黄久久久高潮| 中文字幕一区二区三区精华液| 成人性视频免费网站| 国产欧美日韩另类视频免费观看| 国产伦精品一区二区三区免费| 精品国产乱码久久久久久免费| 黄网站免费久久| 日韩中文欧美在线| 综合激情成人伊人| 欧美国产日韩精品免费观看| 欧美一卡二卡三卡| 欧美精品免费视频| 欧美日韩美少妇| 青青草国产精品亚洲专区无| 精品毛片乱码1区2区3区| 国产伦精品一区二区三区视频青涩 | 国产精品免费人成网站| 精品三级在线看| 日韩午夜中文字幕| 欧美精品日韩综合在线| 欧美日韩在线电影| 欧美日韩久久一区| 欧美高清一级片在线| 欧美视频一区二区| 欧美性受xxxx黑人xyx性爽| 欧美亚洲国产一区在线观看网站| 日韩国产在线一| 视频一区在线播放| 青青草原综合久久大伊人精品 | 一区二区三区在线观看欧美| 中文字幕亚洲欧美在线不卡| 国产精品色眯眯| 亚洲视频精选在线| 亚洲综合一区二区| 亚洲成人免费影院| 奇米色一区二区| 蜜臀精品一区二区三区在线观看| 中文字幕av资源一区| 欧美日韩国产综合草草| 555夜色666亚洲国产免| 欧美xxxx老人做受| 欧美韩日一区二区三区| 亚洲欧美日韩久久精品| 亚洲图片欧美一区| 久久精品国产久精国产爱| 久久不见久久见免费视频1| 麻豆精品在线看| 国产不卡视频一区| 韩国精品在线观看| 日韩av网站免费在线| 国产在线视频一区二区| av亚洲精华国产精华| 欧美精品一二三区| 久久精品网站免费观看| 一区二区激情视频| 另类综合日韩欧美亚洲| 97超碰欧美中文字幕| 欧美一区二区性放荡片| 国产精品午夜免费| 久久你懂得1024| 亚洲一区二区三区免费视频| 精品综合久久久久久8888| 91在线视频播放| 日韩欧美www| 一区二区三区四区乱视频| 国产综合色在线视频区| 91国产丝袜在线播放| 久久久久免费观看| 天天综合网天天综合色| 成人av片在线观看| www.欧美日韩国产在线| 精品少妇一区二区三区在线播放 | 国产成人精品1024| 欧美日韩国产小视频|