欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡

你的位置:首頁 > 測試測量 > 正文

PAM-4印刷電路板最佳實踐

發布時間:2017-08-07 來源:Chang Fei Yee 責任編輯:wenwei

【導讀】本設計實例討論了工程師在設計PCB上的PAM-4PHY 通道時應遵循的關鍵實踐。實現50Gbps PAM-4 PHY鏈路時必須嚴格要求,確保在高速收發器之間實現穩定的通信。
 
隨著物聯網(IoT)和5G移動寬帶應用的興起,預計總體數據流量將會迅猛增長,400千兆以太網(400GbE)作為新一代有線通信標準,能夠有力支持這一趨勢。在400GbE通信的實施中,其電氣接口在8通道上傳輸4電平脈沖幅度調制(PAM-4)信令。每通道50Gbps,總共8個通道結合起來,使以太網的總帶寬可以達到400Gbps。IEEE802.3bs定義了使用50Gbps(即25GBaud)PAM-4信令的400GbE的電氣規范。
 
PAM-4具有4種數字幅度電平,如圖1所示。與NRZ相比,PAM-4的優勢是每個電平或符碼都包含兩個信息比特,在相同的波特率下,吞吐量是NRZ的兩倍。
 
PAM-4印刷電路板最佳實踐
圖1:NRZ與PAM-4的對比。在相同的波特率下,PAM-4的吞吐量是NRZ的兩倍。
 
考慮電源完整性的關鍵設計實現
 
一旦PDN上的開關噪聲耦合至收發器集成電路的電源層,傳輸信號中將感應到抖動,這可能會增加接收集成電路中的比特誤碼率。為了讓噪聲紋波保持在較小水平,符合設計規范,PDN阻抗應低于目標阻抗。目標阻抗由公式1決定。
 
PAM-4印刷電路板最佳實踐
 
PAM-4印刷電路板最佳實踐
 
為了最大限度降低PDN阻抗,要特別關注去耦電容、互連電感和電源平面電容等印刷電路板元件。去耦電容應安裝在靠近高速收發器電源引腳的位置,以減少PDN阻抗,進而在噪聲耦合進收發器集成電路封裝電源平面之前,減小來自外部源(如穩壓器和其它開關集成電路)的噪聲。高速收發器電源引腳的噪聲將低于10mVpp。為Xilinx FPGA上的高速收發器電源引腳推薦的最小電容數量如圖2所示,在靠近每個高速收發器電源組(即MGTAVCC、MGTAVTT和MGTVCCAUX)的位置都安裝了1個4.7uF陶瓷電容器。
 
PAM-4印刷電路板最佳實踐
圖2:為Xilinx FPGA上的高速收發器電源引腳推薦的電容數量。
 
當互連電感減少時,PDN阻抗會相應降低。互連電感主要由走線(連接電容器的貼裝焊盤與過孔)的寄生電感引起。根據圖3所示的印刷電路板的剖面圖,每個互連回路(圖中標示為回路1、2、3)中都會形成互連電感。去耦電容器要盡量安裝在靠近集成電路電源引腳的位置,以最大限度減小互連電感。
 
PAM-4印刷電路板最佳實踐
圖3:印刷電路板內的互連電感。
 
當印刷電路板疊層中的電源平面和接地面之間形成的平面電容增加時,PDN阻抗會降低。參見圖4所示的平面電容基礎模型和公式2,通過減少平行面之間的厚度,增加電源平面與接地面之間并行面的面積,或使用具有較大介電常數的基片,電容會相應升高。
 
PAM-4印刷電路板最佳實踐
圖4:印刷電路板疊層中的平面電容基礎模型。
 
PAM-4印刷電路板最佳實踐
 
PAM-4印刷電路板最佳實踐
 
考慮信號完整性的關鍵設計實現
 
根據指南,印刷電路板上走線長度達到8英寸的PAM-4通道在14GHz和28GHz分別具有低于10dB和20dB的插入損耗,從而在收發器之間實現無縫數據通信。下面我們將從信號完整性的視角討論7個關鍵設計實踐。
 
1.為印刷電路板基片選擇低損耗材料
 
根據介電特性(例如損耗正切和介電損耗),印刷電路板基片介電材料可以分為3類。如表1表示,高損耗材料(如Nelco N4000-6)的損耗正切值超過0.02,介電常數超過4;中等損耗材料(如Isola FR408)的損耗正切值約為0.01,介電常數在3和4之間;低損耗材料(如Duroid 5870)的損耗正切值約為0.001,介電常數低于3。介電衰減與損耗正切和介電常數的平方根成正比,如公式3所示。
 
PAM-4印刷電路板最佳實踐
表1:介電材料種類。
 
PAM-4印刷電路板最佳實踐
 
PAM-4印刷電路板最佳實踐
 
利用公式1在14GHz頻率和8英寸走線長度條件下進行計算,從結果可見,高、中和低損耗材料的介電衰減分別為12.35dB、4.91dB和0.47dB。之前已經提到,在14GHz頻率、8英寸走線長度條件下,插入損耗低于10dB,應選擇較低損耗的材料,以便為其它通道損耗留出裕量。
 
2.最大限度減少過孔殘樁
 
當使用過孔來連接印刷電路板走線至集成電路時,應使用盲孔或反鉆孔(如圖5所示),以最大限度減少殘樁長度,進而提高1/4波諧振頻率,增加物理層鏈路的帶寬。參考公式4,1/4波諧振頻率與殘樁長度成反比。重新排列公式4和5,對于使用低損耗材料的印刷電路板上的50Gbps(即25GBaud/s)PAM-4傳輸,PAM-4印刷電路板最佳實踐為2.33,最大殘樁長度可以達到大約16mil。
 
PAM-4印刷電路板最佳實踐
圖5:盲孔或反鉆孔。
 
PAM-4印刷電路板最佳實踐
 
PAM-4印刷電路板最佳實踐
 
3.最大限度減少交流耦合電容器表面貼裝焊盤造成的阻抗失配
 
與印刷電路板走線相比,交流耦合電容器表面貼裝焊盤使用的銅片更寬。例如,0402封裝中的電容器貼裝焊盤寬度為20mil,而0603封裝的焊盤寬度為30mil。圖6顯示了與100Ω差分走線(differential trace)串聯的電容器表面貼裝焊盤的3D模型,從圖中可以看出,沿著這些6mil寬的銅片走線傳播的信號,一旦到達更寬的銅片焊盤(例如0603封裝的30mil寬度),會遇到阻抗不連續性。根據公式6和7,銅片的橫截面積越大,電容就越大,導致傳輸線特征阻抗出現電容不連續性(如下降)。
 
從圖7的時域反射計(TDR)和Sdd21曲線可知,焊盤越寬,阻抗不連續性就越大,這種不連續性會產生更嚴重的信號反射,進而引起更大的插入損耗。0603和0402在14GHz時的衰減分別為1.2dB和0.4dB,至少兩倍于0201(即0.2dB)的情況。因此,設計師應該使用封裝更小的電容器,例如0201(即10mil寬焊盤)來最大限度減小不連續性。
 
PAM-4印刷電路板最佳實踐
 
PAM-4印刷電路板最佳實踐
 
PAM-4印刷電路板最佳實踐
 
PAM-4印刷電路板最佳實踐
 
PAM-4印刷電路板最佳實踐
圖6:使用Keysight EMPro建模電容表面貼裝焊盤與差分走線串聯。
 
PAM-4印刷電路板最佳實踐
圖7:使用Keysight EMPro仿真不同表面貼裝焊盤寬度的TDR和Sdd21與500mil長的印刷電路板走線串聯。
 
4.提供連續參考面
 
當印刷電路板走線跨越2個分離平面之間的間隙時(圖8粗黑線所示),會遇到電感阻抗不連續性或瑕疵參考。這一現象可用公式(6)和(8)分別確定。為了研究瑕疵參考的影響,在EMPro中創建并仿真跨越分離平面的傳輸線3D模型,如圖9所示。微帶差分走線跨越了100mil長和250mil寬的間隙。間隙深度為微帶差分走線與第3層固體面的間距。跨越間隙時,走線與參考底面之間的距離會增加(即電流返回路徑變長),導致電感升高,從而引起間隙的走線阻抗增加。圖10中的TDR和Sdd21曲線證實了非固體參考面對信號完整性的負面影響,跨越分離面會產生更大的電感阻抗不連續性,進而導致更高的插入損耗。因此,確保固體參考面覆蓋整個走線長度路徑十分重要。
 
PAM-4印刷電路板最佳實踐
圖8:印刷電路板俯視圖:信號跨越分離面。
 
PAM-4印刷電路板最佳實踐
 
式中: L = 銅走線的寄生電感(nH); d = 銅走線和參考底面之間的距離(cm); w = 銅走線寬度(cm); t = 銅走線厚度(cm); x = 銅走線長度(cm)。
 
PAM-4印刷電路板最佳實踐
圖9:Keysight EMPro中差分走線跨越分離面的模型。
 
PAM-4印刷電路板最佳實踐
圖10:使用Keysight EMPro仿真、帶固體參考面并跨越分離面的500mil長印刷電路板走線的TDR和Sdd21。
 
5.最大限度減少信號串擾
 
串擾會引起受擾信號出現噪聲感應,從而導致接收集成電路的誤碼增加。因此,帶狀線上使用非交叉布線,因為FEXT相比NEXT更低;而在微帶線上使用交叉布線,因為與FEXT相比NEXT更低。除此之外,差分對間間隔應至少是走線寬度的三倍。
 
6.差分對內偏移
 
印刷電路板走線中的差分對內偏移會帶來更高的插入損耗,從而增加物理層鏈路的誤碼率。由于反相和非反相信號的相位并不是正好相差180度,所以差分模式中的眼高度會變小。圖11中的Sdd21曲線顯示了差分對內偏移對信號完整性的影響,偏移越大,插入損耗越高。因此,每個物理層鏈路的差分對內偏移都應限制在5mil以內,以減少傳輸損耗。可以使用蛇形布線技術來最大限度減少偏移。
 
PAM-4印刷電路板最佳實踐
圖11:使用Keysight ADS仿真、具有不同差分對內偏移的8英寸長印刷電路板走線的Sdd21。
 
7.光纖編織
 
印刷電路板介電基片由編織玻璃纖維與環氧樹脂結合組成。圖12是使用顯微鏡看到的、采用纖維編織樣式106和7628制成的印刷電路板基片的俯視圖。淺棕色粗線是玻璃纖維編織部分,黑色的方塊是環氧樹脂。編號更高的玻璃纖維樣式,如7628,可以實現更密集的玻璃纖維編織。
 
PAM-4印刷電路板最佳實踐
圖12:印刷電路板的介電基片是利用玻璃纖維樣式106和7628編織的纖維織物。
 
玻璃纖維與環氧樹脂的介電屬性截然不同。例如,NE玻璃纖維的介電常數(Dk)和損耗正切(Df)分別為4.4和0.0006,E玻璃纖維的Dk和Df分別為6.6和0.0012。而環氧樹脂的Dk為3.2,遠遠低于玻璃纖維的對應值。當使用較為稀疏的纖維編織做基片時,印刷電路板走線能夠更頻繁地穿過樹脂和玻璃纖維的不同區域。結果就是,信號沿著走線從發送端傳輸到接收端,其速度或傳播時延經常會發生變化。它們之間的關系可以通過公式9來說明。
 
PAM-4印刷電路板最佳實踐
 
式中: V = 信號在印刷電路板上的速度(英寸/ns); C = 光速(約12英寸/ns);PAM-4印刷電路板最佳實踐 = 介電常數。
 
這種情況為50Gbps信號傳輸帶來了巨大挑戰。例如,在最壞情況下,非反相信號走線可能穿過玻璃纖維但沒有穿過環氧樹脂,而反相信號的走線可能穿過很多樹脂區域。結果,由于反相信號遇到不斷變化的傳播時延,非反相信號與反相信號之間的相位差在接收端一般會遠遠小于180o。上升沿和下降沿之間的大偏移或錯位,導致眼圖寬度和高度減少。而且,接收端會出現高誤碼率。因此,解決辦法就是采用更密集的纖維編織。
 
布局后的通道仿真
 
一旦按照上述關鍵實踐完成了印刷電路板布局設計,布局文件將導入Keysight EMPro進行3DEM仿真。選擇圖13中突出顯示的8英寸長差分走線進行s參數抽取,將其導入Keysight ADS進行布局后PAM-4通道仿真。圖14中的插入損耗曲線顯示提取的差分走線符合規定的閾值,即在14GHz時低于10dB,在28GHz時低于20dB。
 
PAM-4印刷電路板最佳實踐
圖13:選擇差分走線用于3DEM仿真。
 
PAM-4印刷電路板最佳實踐
圖14:印刷電路板上所選PAM-4差分走線的插入損耗曲線。
 
圖15顯示了使用Keysight ADS生成的通道分析拓撲,兩個25GBaud/s的PAM-2信號注入壓控電壓源以生成PAM-4信號。PAM-4波形的傳播路徑為:發射端封裝、8英寸PCB走線(即圖13中顯示的傳輸線)、接收端封裝,最后是接收端。在發射端,信號幅度和上升/下降時間分別為1.2Vpp和16ps。PAM-4信號的最小眼寬和眼高分別為1/4單位間隔(即25GBaud/s數據速率下為10ps)和50mV。如圖16所示,PAM-4眼圖有4個數字幅度電平,因此有3個眼圖。在啟用決策反饋均衡(DFE)前,接收端信號的眼高和眼寬分別為60mV和14ps。一旦啟用接收端的6接頭DFE,眼圖幾乎變大一倍(即140mV眼高和23ps眼寬)。結果符合指南中的技術指標。均衡方案的選擇和接頭的調節很大程度上取決于通道的插入損耗或頻率響應。我們進行了多次嘗試來獲得更好的開眼結果。
 
PAM-4印刷電路板最佳實踐
圖15:使用Keysight ADS在25GBaud/s下進行布局后PAM-4通道仿真。
 
PAM-4印刷電路板最佳實踐
圖16:從圖15中的通道仿真結果得到的接收端眼圖。
 
結論
 
工程師在設計印刷電路板PAM-4物理層通道時,應謹慎借鑒本文討論的所有關鍵實踐。實施50Gbps PAM-4物理層鏈路時必須嚴格要求,確保在高速收發器之間實現穩定的通信。
 
作者:Chang Fei Yee,Keysight公司
 
本文轉載自《電子技術設計》。
 
 
 
 
 
 
推薦閱讀:


大多數IoT設備最初的EMI測試都失敗了
FLIR紅外熱像儀支持燃料電池技術研究
毫米波雷達PK激光雷達,各自短版如何彌補?
實施安全可靠的汽車應用FPGA解決方案
四個要點,幫你搞定LoRa天線匹配電路
 
 
 
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡
亚洲欧洲综合另类| 日韩欧美美女一区二区三区| 卡一卡二国产精品| 亚洲小说欧美激情另类| 亚洲人成网站影音先锋播放| 亚洲日本电影在线| 亚洲制服丝袜在线| 午夜亚洲国产au精品一区二区| 亚洲一区影音先锋| 香蕉成人伊视频在线观看| 视频一区在线播放| 国产中文字幕精品| 波多野结衣精品在线| 91美女精品福利| 欧美日韩在线三级| 91精品视频网| 国产三级欧美三级日产三级99| 国产欧美一区二区精品忘忧草 | 欧美日韩一二三区| 欧美一区二区三区在| 精品理论电影在线| 国产精品的网站| 亚洲自拍偷拍九九九| 久久国产精品99精品国产| 国产一区二区在线免费观看| 成人h动漫精品一区二| 色乱码一区二区三区88| 欧美一区二区三区日韩视频| 久久网站最新地址| 亚洲国产日韩a在线播放性色| 久久丁香综合五月国产三级网站| 成人小视频免费在线观看| 欧美性猛交xxxxxx富婆| 久久五月婷婷丁香社区| 亚洲欧美日韩国产综合| 男女视频一区二区| 一本久道中文字幕精品亚洲嫩| 日韩免费福利电影在线观看| 亚洲色欲色欲www| 久久er99热精品一区二区| 色婷婷av久久久久久久| 久久青草欧美一区二区三区| 亚洲精品国产一区二区精华液| 久久成人久久爱| 欧美午夜寂寞影院| 国产精品超碰97尤物18| 国产在线不卡视频| 欧美日韩国产另类不卡| 中文字幕在线一区| 韩国精品久久久| 欧美一区二区三区白人| 一区二区三区四区在线免费观看| 国产成人精品亚洲午夜麻豆| 欧美剧在线免费观看网站| 亚洲欧美另类久久久精品2019| 极品瑜伽女神91| 日韩欧美三级在线| 日本不卡一区二区三区| 欧美性大战久久| 一区二区视频免费在线观看| 国产成人精品www牛牛影视| 日韩欧美专区在线| 肉丝袜脚交视频一区二区| 一本到一区二区三区| 国产精品免费人成网站| 国产成人自拍高清视频在线免费播放| 欧美一区二区在线看| 日韩国产高清影视| 欧美精选午夜久久久乱码6080| 一区二区三区电影在线播| 在线一区二区三区| 一区二区三区影院| 欧美在线视频日韩| 偷窥少妇高潮呻吟av久久免费| 欧美老女人在线| 美女网站视频久久| 精品国产3级a| 国产夫妻精品视频| 亚洲同性同志一二三专区| 91同城在线观看| 亚洲综合免费观看高清完整版 | 国产一区二区三区四区五区入口 | 国产色产综合色产在线视频| 国产乱人伦偷精品视频不卡| 国产午夜亚洲精品羞羞网站| 国产精品1024久久| 综合婷婷亚洲小说| 欧美日韩亚洲不卡| 美女在线视频一区| 国产视频一区二区三区在线观看| 99精品在线免费| 亚洲高清免费在线| 精品国产污网站| 成人黄页毛片网站| 亚洲成a人v欧美综合天堂下载 | 99在线热播精品免费| 一区二区三区在线观看国产| 欧美一区二区三区免费视频| 国产精品一区二区你懂的| 亚洲欧美激情小说另类| 91精品国产91久久久久久一区二区| 精品亚洲成av人在线观看| 中文字幕av在线一区二区三区| 色偷偷一区二区三区| 美女网站一区二区| 亚洲少妇30p| 日韩精品一区国产麻豆| 色综合久久久网| 久久成人免费网| 一区二区三区在线观看视频| 26uuu精品一区二区在线观看| aaa欧美色吧激情视频| 久久精品国产秦先生| 亚洲欧美国产三级| 久久午夜免费电影| 欧美日韩国产美女| www.日韩大片| 国产一区二区三区免费看 | 久久久久久日产精品| 一本色道久久加勒比精品| 国产在线观看免费一区| 人禽交欧美网站| 亚洲精品视频一区二区| 国产精品国产三级国产普通话蜜臀| 日韩午夜激情免费电影| 欧美午夜精品免费| 99国产欧美久久久精品| 国产成人免费视频| 国产一区91精品张津瑜| 麻豆91在线看| 青青草原综合久久大伊人精品优势| 亚洲三级小视频| 中文字幕制服丝袜一区二区三区 | 色婷婷综合视频在线观看| 国产久卡久卡久卡久卡视频精品| 日韩精品高清不卡| 午夜精品福利久久久| 亚洲欧美日韩在线播放| 国产精品色哟哟网站| 国产婷婷色一区二区三区在线| 精品久久久久久久久久久院品网 | 国产精品亚洲专一区二区三区| 日韩精品福利网| 五月天一区二区| 天堂资源在线中文精品| 偷窥少妇高潮呻吟av久久免费| 亚洲成a人v欧美综合天堂| 亚洲图片自拍偷拍| 日产欧产美韩系列久久99| 香蕉成人伊视频在线观看| 日韩精品成人一区二区三区| 偷拍一区二区三区四区| 视频一区二区中文字幕| 另类综合日韩欧美亚洲| 久久成人免费日本黄色| 国产一区二区调教| 北岛玲一区二区三区四区| 色欧美乱欧美15图片| 色94色欧美sute亚洲线路二| 欧美性高清videossexo| 日韩三级视频中文字幕| 久久久久久久久久久电影| 欧美国产一区二区在线观看| 成人欧美一区二区三区黑人麻豆 | 精品一区二区在线观看| 国产在线乱码一区二区三区| 国产成都精品91一区二区三| 成人av在线一区二区| 欧美亚洲日本国产| 欧美一区二区日韩一区二区| 久久久亚洲高清| 亚洲伦理在线精品| 蜜臀久久久久久久| 成人黄色免费短视频| 欧美三区在线视频| 久久蜜臀中文字幕| 亚洲综合丁香婷婷六月香| 麻豆91在线观看| 日本二三区不卡| 久久蜜臀精品av| 一级女性全黄久久生活片免费| 麻豆91免费看| 色婷婷一区二区| 久久久影视传媒| 午夜私人影院久久久久| 成人精品免费看| 在线综合视频播放| 亚洲美女淫视频| 国产一区二区三区av电影 | 国产精品一区免费视频| 日本久久一区二区| 久久久噜噜噜久久中文字幕色伊伊| 最近日韩中文字幕| 国产一区二区三区精品视频| 精品视频123区在线观看| 欧美激情一区在线| 久久激五月天综合精品| 欧美另类高清zo欧美| 亚洲黄色小视频| 91亚洲国产成人精品一区二三|