欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡

你的位置:首頁 > EMC安規(guī) > 正文

抑制開關穩(wěn)壓器EMI:不用濾波電路,還有什么好方法?

發(fā)布時間:2021-10-19 來源:DigiKey 責任編輯:wenwei

【導讀】對于要實現(xiàn)電池供電或分布式電源系統(tǒng)的設計人員來說,使用低壓降 (LDO)穩(wěn)壓器還是開關穩(wěn)壓器往往是個問題。開關穩(wěn)壓器的效率相對更高,可謂是一項優(yōu)勢,尤其是對于電池供電產品。然而,電源中快速開關晶體管產生的EMI才是關鍵權衡要素——在高度集成的緊湊型設計中,EMI可能會衍生成更嚴重的問題。

 

輸入和輸出濾波電路可減輕EMI的影響,但會增大電路尺寸、增加成本和復雜性。新一代的集成式模塊化開關穩(wěn)壓器解決了這些問題,這些開關穩(wěn)壓器可提供各種內置技術來抑制EMI,同時不影響穩(wěn)壓器的性能或效率。

 

本文簡要說明了開關穩(wěn)壓器在便攜式設計中占據(jù)的優(yōu)勢以及濾波電路的重要性。此外,還以 Allegro Microsystems 、Analog Devices 和Maxim Integrated的產品為例,介紹了內置EMI濾波器的開關穩(wěn)壓器以及用其簡化功率傳輸?shù)姆椒ā?/p>


為什么要在便攜式設計中使用開關穩(wěn)壓器?


效率高、功耗低(降低熱管理難度)、功率密度大是選擇開關穩(wěn)壓器而非LDO的主要原因。在大部分負載范圍內,商用開關穩(wěn)壓器模塊的效率(即輸出功率/輸入功率 x 100)通常約為90%至95%,遠高于同等的LDO。此外,開關穩(wěn)壓器既能升壓、降壓,也可提供反相電壓,因此在靈活性上也勝過LDO。


 開關穩(wěn)壓器的核心是脈沖寬度調制 (PWM) 開關元件,包含一兩個金屬氧化物半導體場效應晶體管(MOSFET),以及與之配對的一兩個電感器用于能量存儲。開關穩(wěn)壓器的工作頻率決定了單位時間內的開關循環(huán)次數(shù),而PWM信號的占空比 (D) 決定了輸出電壓(根據(jù) VOUT= D × VIN)。


在便攜式設計中,開關穩(wěn)壓器的高效率雖是一項優(yōu)勢,卻也存在不少待權衡要素,包括成本、復雜性、尺寸、負載瞬變響應慢以及低負載下的低效率(盡管正在逐步改進)。另一項主要設計挑戰(zhàn)是應對功率晶體管開關產生的EMI。其開關動作會引起電路其他部分的電壓和電流過沖,從而導致輸入輸出電壓和電流紋波,并在開關頻率處(及其倍數(shù))產生瞬態(tài)能量尖峰。電壓紋波在PWM“開啟”周期結束時達到峰值(圖1)。


28.png

圖1:開關穩(wěn)壓器的輸出電壓紋波波形圖顯示了瞬態(tài)尖峰是EMI的主要來源。(圖片來源:Analog Devices)


EMI管理策略


如需降低因穩(wěn)壓器功率FET開關引起的EMI,在輸入和輸出端添加電阻電容(R-C) 吸收電路是一種行之有效的方法。該電路有助于濾除能量尖峰,減小電壓和電流紋波,從而降低 EMI。在好的設計中,輸出電壓為2至5V的開關電源最好能將電壓紋波峰峰值降至10至50mV,并使瞬態(tài)尖峰最小化。


濾波電路元件的選型是一項棘手的工作,尤其是輸入和輸出端的大容量電容器,因為需要在元器件尺寸、成本(以及對穩(wěn)壓器瞬態(tài)響應和回路補償?shù)挠绊懀┡c電壓峰峰值、電流紋波和EMI抑制之間進行權衡。


借助基于關鍵公式的一些成熟技術是不錯的切入點。輸入電壓紋波包括ΔVQ(由輸入電容器放電產生)和ΔVESR(由輸入電容器的等效串聯(lián)電阻 (ESR) 產生)。如果已指定輸入端的電壓紋波最大峰峰值,分別通過公式1和公式2即可估算大容量電容器的所需輸入電容 (CIN)和ESR:


1634442123345979.png


同樣,如果已指定輸出端的電壓紋波最大峰峰值,則分別通過公式3和公式4即可確定大容量電容器的電容和ESR:


1634442104752064.png


請務必注意,ΔVESR和ΔVQ不可直接相加,因為兩者彼此相位相異。如果設計人員選擇陶瓷電容器(ESR通常較低),則主要是ΔVQ;若選擇電解電容器,則主要是ΔVESR。


快速負載瞬變期間輸出電壓與期望輸出的可接受偏差也會影響輸出電容容量和ESR阻值的選擇。具體而言,在開關穩(wěn)壓器控制器增大PWM占空比來響應負載瞬變前,輸出電容器必須能夠在瞬變期間支持負載電流。如需計算負載階躍期間最小輸出偏差所需的輸出電容和ESR,可分別使用公式5和公式6:


1634442082942876.png


這些計算雖有助于簡化相應元件的選擇以管理電壓和電流紋波及瞬態(tài)尖峰,但設計人員仍必須考慮電容器的耗散功率 (PCAP)。計算公式如下:


1634442055857903.png


該公式表明在給定ESR的情況下,內部溫升與紋波電流的平方成正比。在用于減小較大的紋波電流時,可能會造成電容器明顯發(fā)熱,如果散熱不及時,則電容器的電解液將逐漸蒸發(fā),使其性能下降直至完全失效。為了避免出現(xiàn)這種情況,工程師必須選擇表面積較大、價格更昂貴的器件以促進散熱。


使用低EMI穩(wěn)壓器


盡管輸入和輸出濾波可減小電壓和電流紋波,但是選擇一款既符合規(guī)格,又能實現(xiàn)最小紋波高度峰峰值的開關穩(wěn)壓器才是好的設計習慣。藉此減少濾波電容器因功率耗散而產生的應力,從而使用更為小巧、便宜的器件。


實現(xiàn)最小電壓和電流紋波的一種技術是采用電壓模式控制方案。在此方案中,通過將控制電壓施加到比較器的一個輸入端,并將時鐘產生的固定頻率鋸齒電壓(或“PWM斜坡”)施加到另一輸入端來生成PWM信號。相較于另一種可選的電流模式控制方案,該技術在實現(xiàn)EMI最小化方面性能更佳。前者更容易加劇EMI程度,因為功率級產生的噪聲往往會進入控制反饋回路。(參閱Digi-Key文庫文章《DC-DC開關穩(wěn)壓器中用于PWM信號發(fā)生的電壓和電流模式控制》)


除了考慮采用電壓模式控制外,多家芯片供應商還提供了許多方法來從內部減小電壓和電流紋波的幅度。Allegro Microsystems的A8660同步降壓轉換器正是一個實例。這款高端器件通過了汽車AEC-Q100認證。該穩(wěn)壓器的輸入電壓 (VIN) 范圍為0.3至50V,可調輸出電壓范圍為3至45V,可編程基本頻率 (fOSC) 范圍為200kHz至2.2MHz。此外,A8660還提供一系列保護功能,包括在器件退出壓降狀態(tài)時,通過軟恢復來防止VOUT過沖和電壓尖峰干擾。


穩(wěn)壓器實現(xiàn)EMI最小化的關鍵在于一種稱作PWM基本頻率抖動的技術。啟用后,內部設置的“抖動掃描”會系統(tǒng)地將fOSC改變±10%,從而使開關頻率能量分散。抖動調制頻率 (fMOD)為12kHz,以三角調制波形進行掃描。


在啟用和禁用抖動的情況下,A8660的傳導和輻射發(fā)射頻譜對比如圖2所示。兩個測試設置采用的外部元器件和印刷電路板布局完全相同。


33.png圖2:使用固定基本頻率(紅色)的開關穩(wěn)壓器與采用頻率抖動(藍色)的穩(wěn)壓器輻射發(fā)射頻譜對比。工作參數(shù):fOSC = 2.2MHz,VIN = 12V,VOUT= 3.3V,負載 = 3A。(圖片來源:Allegro Microsystems)


對于工作頻率低于AM無線電頻段 (fOSC < 520kHz) 的設計,A8660的同步輸入可用于fOSC及其諧波的頻移,以進一步降低EMI。只需將外部時鐘連接至SYNCIN引腳,并將A8660的基本頻率由fOSC的1.2倍增至1.5倍即可實現(xiàn)。


Analog Devices的LT8210IFE同步降壓/升壓控制器也具有三角頻率調制方案。在這種情況下,LT8210IFE可將fSW由標稱設定頻率緩慢擴展至設定值的112.5%,并解擴恢復。


此外,該器件還具有“直通”功能可暫停開關,從而消除開關損耗以降低EMI并提高效率。該穩(wěn)壓器的輸入范圍為2.8至100V,輸出為1至100V。輸出電壓精度為±1.25%,反向輸入保護高達-40V。


啟用直通模式時,穩(wěn)壓器的降壓和升壓調節(jié)回路可獨立運行。通過將降壓調節(jié)模式預設輸出電壓 VOUT(BUCK) 設置成高于升壓調節(jié)模式預設輸出電壓VOUT(BOOST),即可使用獨立的誤差電流來產生直通窗口。直通模式對輸出電壓紋波的影響如圖所示(圖3)。


34.png

圖3:在直通模式下,即使面對高噪聲輸入源(紅色跡線),LT8210穩(wěn)壓器亦可減小輸出電壓紋波(藍色跡線)。(圖片來源:Analog Devices)


VIN在VOUT(BOOST)與VOUT(BUCK)之間時,輸出電壓追蹤輸入電壓。一旦VOUT趨近于VIN,LT8210就會進入低功耗狀態(tài)(直通模式),即開關A和D持續(xù)導通,而開關B和C關斷。VOUT超出VIN達到設定百分比時,開關A、C 和 D關斷,直至放電使輸出電壓與VIN幾乎相等時,才重新連接輸出。如果處于(非開關)直通窗口內時輸入出現(xiàn)正瞬變,使得VIN超出VOUT達到設定百分比,則開關將重新導通,以防電感器電流中出現(xiàn)較大幅度瞬時振蕩。此時,輸出電壓將逐漸接近輸入電壓,方式類似于軟啟動,而VOUT趨近于VIN時,開關A和D將再次持續(xù)導通。開關拓撲如圖4所示。


35.png

圖4:LT8210穩(wěn)壓器的開關。在直通模式下,開關A和D持續(xù)導通,而開關B和C關斷。(圖片來源:Analog Devices)


Maxim Integrated的低EMI產品是MAX15021ATI+T降壓開關穩(wěn)壓器。輸入電壓范圍為2.5至5.5V,并具有兩路輸出,每路輸出都可由0.6V調節(jié)至輸入電壓大小。該穩(wěn)壓器的基本頻率范圍為500kHz至4MHz,可通過單個電阻器進行調節(jié)。


除了支持電壓模式控制方案以減小電壓紋波外,MAX15021穩(wěn)壓器還可使用180°異相時鐘信號來工作(圖5)。此外,該器件的開關頻率可調節(jié),最高可達4MHz,藉此可顯著減小RMS輸入紋波電流。而輸入電流峰值的減小(紋波頻率增高),使所需輸入旁路電容容量減小,從而縮小所需電容器的尺寸。


1634441892932772.png

圖5:MAX15021雙通道穩(wěn)壓器可實現(xiàn)180°異相工作以抑制EMI。(圖片來源:Maxim Integrated)


本文小結


在高效率至關重要的應用中,模塊化開關穩(wěn)壓器是電壓調節(jié)的不錯選擇。但是,相較于LDO等替代解決方案,權衡要素包括電壓和電流紋波,以及穩(wěn)壓器開關元件產生的瞬態(tài)電壓尖峰。若不經濾波,噪聲會產生EMI,從而影響靠近穩(wěn)壓器的敏感芯片。


雖然使用輸入和輸出濾波電路等成熟設計技術可降低EMI,但也需要借助大容量電容器來解決瞬態(tài)尖峰和紋波問題,同時還會產生較大耗散功率,導致元器件過熱。


不過,工程師現(xiàn)可使用采用各種內置技術的新一代模塊化開關穩(wěn)壓器,來減小電壓和電流紋波以及瞬態(tài)尖峰,甚至在添加濾波電路前就可以抑制EMI。通過在設計中使用這些穩(wěn)壓器,工程師能縮小輸入和輸出端的大容量電容器尺寸,從而縮小濾波電路的尺寸并降低成本。


作者:Steven Keeping 來源:得捷電子DigiKey



免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯(lián)系小編進行處理。


推薦閱讀:


UWB技術的工作原理探討

智能手表手環(huán)AMOLED顯示屏電源芯片SGM38046

利用WiFi模塊進行遠程嵌入式開發(fā)

優(yōu)化電源轉換器控制回路的三種方案

利用異步采樣速率轉換簡化數(shù)字數(shù)據(jù)接口

特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索

關閉

?

關閉

欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡
伊人一区二区三区| 6080午夜不卡| 麻豆精品一区二区综合av| 亚洲观看高清完整版在线观看| 中文字幕一区二区在线播放| 国产女同互慰高潮91漫画| 国产欧美精品一区aⅴ影院| 亚洲精品一区在线观看| 久久蜜桃av一区二区天堂| 国产丝袜美腿一区二区三区| 国产三级欧美三级日产三级99| 国产亚洲欧美中文| 亚洲欧美自拍偷拍色图| 亚洲一区中文在线| 午夜久久久久久久久久一区二区| 五月天网站亚洲| 精品一区二区免费在线观看| 国产麻豆精品95视频| 不卡一区二区中文字幕| 日本久久一区二区三区| 欧美一区午夜视频在线观看| 日韩一区二区不卡| 国产午夜亚洲精品不卡| 国产精品传媒入口麻豆| 亚洲一区免费观看| 精品综合免费视频观看| 99精品久久99久久久久| 欧美日韩精品一区二区三区蜜桃| 精品国产凹凸成av人网站| 国产精品毛片久久久久久久| 亚洲va欧美va天堂v国产综合| 韩国三级在线一区| 色婷婷综合久色| 欧美成人在线直播| 亚洲丝袜美腿综合| 日韩黄色免费网站| 丰满放荡岳乱妇91ww| 欧美日本一区二区在线观看| 国产日韩视频一区二区三区| 午夜免费久久看| 成人手机在线视频| 欧美一区二区黄色| 一区二区在线免费观看| 韩国精品主播一区二区在线观看| 在线观看亚洲一区| 亚洲国产高清不卡| 美国十次综合导航| 欧美中文字幕一区| 中文字幕一区二区三区乱码在线| 蜜桃av噜噜一区二区三区小说| 91在线观看视频| xfplay精品久久| 亚洲aaa精品| 色婷婷国产精品| 国产欧美日韩综合精品一区二区| 日韩精品国产欧美| 欧美日韩精品一区二区三区四区| 国产精品妹子av| 国产一区二区三区四区在线观看| 日韩一级精品视频在线观看| 亚洲高清一区二区三区| 在线观看亚洲精品视频| 日韩毛片在线免费观看| kk眼镜猥琐国模调教系列一区二区| 亚洲精品一区二区三区99| 日韩高清一区二区| 欧美一区二区三区免费观看视频| 亚洲高清免费一级二级三级| 欧美性生活久久| 一区二区国产视频| 欧美亚洲国产一区在线观看网站| 樱花草国产18久久久久| 色综合久久六月婷婷中文字幕| 国产精品天干天干在观线| 国产精品综合一区二区| 2020国产精品| 成人性视频免费网站| 国产日产欧美一区| www.欧美色图| 一区二区三区免费观看| 欧美精品日日鲁夜夜添| 日韩av一区二区三区| 精品国产乱码久久久久久闺蜜| 国产九色sp调教91| 日韩一区在线免费观看| 一本一本大道香蕉久在线精品| 亚洲另类一区二区| 欧美日韩国产a| 老司机精品视频导航| 国产色产综合产在线视频| 成人精品视频一区| 亚洲天天做日日做天天谢日日欢| 色88888久久久久久影院野外| 亚洲午夜精品在线| 欧美一区二区三区在线观看| 久久国产乱子精品免费女| 国产清纯在线一区二区www| 91丨九色丨蝌蚪富婆spa| 亚洲国产中文字幕| 精品美女在线观看| 高清shemale亚洲人妖| 亚洲一区在线视频观看| 日韩欧美高清dvd碟片| 成人av网址在线| 亚洲高清视频的网址| 国产午夜精品在线观看| 欧美三级资源在线| 国产精品一二三区在线| 亚洲欧美一区二区三区久本道91 | 日韩欧美电影在线| 国产传媒欧美日韩成人| 亚洲欧美一区二区不卡| 欧美一级黄色录像| 成人av网站大全| 秋霞国产午夜精品免费视频| 国产精品二三区| 欧美久久久久久久久| www.性欧美| 久久国产日韩欧美精品| 亚洲女爱视频在线| 久久久久高清精品| 欧美日韩电影在线播放| 91丝袜美女网| 国产一区二区三区四区五区入口| 亚洲福利视频导航| 1024精品合集| 日本一区二区视频在线观看| 欧美日韩www| 色狠狠色狠狠综合| 国产91精品欧美| 蜜桃视频一区二区| 偷拍一区二区三区| 一区二区三区在线看| 亚洲国产高清在线| 国产亲近乱来精品视频 | 日本黄色一区二区| 国产91色综合久久免费分享| 美女网站在线免费欧美精品| 亚洲一区二区三区四区在线| 亚洲另类中文字| 亚洲人成影院在线观看| 国产精品美女久久久久久久| 国产日韩欧美一区二区三区乱码 | 日本网站在线观看一区二区三区| 亚洲亚洲精品在线观看| 国产精品超碰97尤物18| 久久精品无码一区二区三区| 精品国产一二三区| 久久日一线二线三线suv| 精品欧美久久久| 26uuu精品一区二区在线观看| 精品国产区一区| 国产亚洲欧美日韩俺去了| 国产亚洲欧美激情| 国产精品久久免费看| 国产精品久久久久久久浪潮网站| 国产视频911| 亚洲美女区一区| 亚洲一区二区三区国产| 亚洲午夜影视影院在线观看| 日日骚欧美日韩| 奇米一区二区三区| 国产做a爰片久久毛片| 国产成人精品三级| 99国产精品99久久久久久| 在线中文字幕一区二区| 欧美精品tushy高清| 日韩欧美www| 国产欧美日韩另类一区| 亚洲免费观看高清完整版在线| 性久久久久久久久| 国内成人免费视频| 99久久久精品| 日韩一区二区三区在线| 久久色.com| 亚洲一区二区不卡免费| 精品中文字幕一区二区小辣椒| 欧美日韩国产系列| 欧美三级视频在线播放| 欧美大度的电影原声| 国产精品久久久99| 首页国产欧美日韩丝袜| 国产乱码精品一区二区三区忘忧草| 99国内精品久久| 欧美va亚洲va香蕉在线| 亚洲黄色小说网站| 国精品**一区二区三区在线蜜桃| 色国产精品一区在线观看| 欧美日韩日日摸| 亚洲国产高清aⅴ视频| 日日摸夜夜添夜夜添亚洲女人| 国产精品66部| 欧美久久久久中文字幕| 国产精品欧美一区喷水| 蜜臀a∨国产成人精品| 色综合天天综合给合国产| 日韩欧美资源站| 亚洲精品精品亚洲| 国产99久久久精品| 日韩你懂的在线播放|