欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡

你的位置:首頁 > EMC安規(guī) > 正文

汽車電子MCU的抗EMI設(shè)計與測試方案

發(fā)布時間:2014-08-05 責(zé)任編輯:willwoyo

【導(dǎo)讀】隨著集成電路集成度的提高,越來越多的元件集成到芯片上,電路功能變得復(fù)雜,工作電壓也在降低。當(dāng) 一個或多個電路里產(chǎn)生的信號或噪聲與同一個芯片內(nèi)另一個電路的運(yùn)行彼此干擾時,就產(chǎn)生了芯片內(nèi)的EMC問題,最為常見的就是 SSN(Simultaneous Switch Noise,同時開關(guān)噪聲)和Crosstalk(串音),它們都會給芯片正常工作帶來影響。

由于集成電路通過高速脈沖數(shù)字信號進(jìn)行工作,工作頻率越高產(chǎn) 生的電磁干擾頻譜越寬,越容易引起對外輻射的電磁兼容方面問題。基于以上情況,集成電路本身的電磁干擾(EMI)與抗擾度(EMS)問題已成為集成電路設(shè)計與制造關(guān)注的課題。

集成電路電磁兼容不僅涉及集成電路電磁干擾與抗擾度的設(shè)計和測試方法,而且有必要與集成電路的應(yīng)用相結(jié)合。針對汽車電子領(lǐng)域來講,將對整車級、零部件級的電磁兼容要求強(qiáng)制性標(biāo)準(zhǔn),結(jié)合到集成電路的設(shè)計中,才能使電路更易于設(shè)計出符合標(biāo)準(zhǔn)的最終產(chǎn)品。作為電子控制系統(tǒng)里面最為關(guān)鍵的單元——微控制器(MCU),其EMC性能的好壞直接影響各個模塊與系統(tǒng)的控制功能。
本文在汽車電子MCU 中采用抗EMI的設(shè)計方法,依據(jù)IEC61967傳導(dǎo)測試標(biāo)準(zhǔn),對汽車電子MCU進(jìn)行電磁干擾的測試。

 汽車電子MCU設(shè)計方法

下面介紹在汽車電子MCU中使用的可行性設(shè)計方法以及其他幾種抗EMI設(shè)計技術(shù)。

2.1 時鐘電路設(shè)計
由于時鐘電路產(chǎn)生的時鐘信號一般都是周期信號,其頻譜是離散的,離散譜的能量集中在有限的頻率上。又由于系統(tǒng)中各個部分的時鐘信號通常由同一時鐘分頻、倍頻得到,它們的譜線之間也是倍頻關(guān)系,重疊起來進(jìn)而增大輻射的幅值,因此說時鐘電路是一個非常大的污染源。
針 對汽車電子MCU 數(shù)字前端設(shè)計,在抗EMI方面采用門控時鐘的方法改進(jìn)。任何時鐘在不需要時都應(yīng)關(guān)閉,減低工作時鐘引起的電磁發(fā)射問題。根據(jù)A8128(汽車電子MCU的 型號)芯片系統(tǒng)功能設(shè)計要求,采用Run、Idle、Stop和Debug四種工作模式,在每一種工作模式下針對系統(tǒng)時鐘、外設(shè)模塊時鐘進(jìn)行適當(dāng)門控。此 外,還有幾種在時鐘方面常見的抗EMI的設(shè)計方法,包括:

①降低工作頻率
MCU的工作時鐘應(yīng)該設(shè)定為滿足性能要求所需的最低頻率。從下面的測試結(jié)果可以看出,一個MCU的運(yùn)行頻率由80MHz變?yōu)?0MHz,可以使頻譜寬頻范圍內(nèi)的干擾峰值產(chǎn)生幾十dBμV 的衰減,而且能夠有效的降低功耗。

②異步設(shè)計
異步電路工作沒有鎖定一個固有頻率,電磁輻射大范圍均勻分布而不會集中在特定的窄帶頻譜中。這一關(guān)鍵本質(zhì)特征決定了即使異步電路使用大量的有源門電路,它所產(chǎn)生的電磁發(fā)射也要比同步電路小。

③擴(kuò)展頻譜
擴(kuò) 展頻譜時鐘是一項能夠減小輻射測量值的技術(shù),這種技術(shù)對時鐘頻率進(jìn)行1%~2%的調(diào)制,擴(kuò)散諧波分量,在CISPR16或FCC發(fā)射測試中峰值較低,但這 并非真正減小瞬時發(fā)射功率。因此,對一些快速反應(yīng)設(shè)備仍可能產(chǎn)生同樣的干擾。擴(kuò)展頻譜時鐘不能應(yīng)用于要求嚴(yán)格的時間通信網(wǎng)絡(luò)中,比如FDD、以太網(wǎng)、光纖 等。

2.2 IO端口設(shè)計
在汽車電子MCU 的輸入輸出端口設(shè)計中,也加入了抗EMI方案,包括翻轉(zhuǎn)速率(slew rate control)和驅(qū)動強(qiáng)度(drive strength)控制方法。通過在所有通用P口引入可配置的翻轉(zhuǎn)速率和驅(qū)動強(qiáng)度寄存器,在需要的時候打開相應(yīng)功能。翻轉(zhuǎn)速率有打開和關(guān)閉兩種選擇,打開 后能夠有效地平緩上升沿或者下降沿,降低瞬態(tài)電流,進(jìn)而控制芯片產(chǎn)生的電磁干擾強(qiáng)度。驅(qū)動強(qiáng)度有強(qiáng)驅(qū)動電流和弱驅(qū)動電流兩種選擇,在能夠滿足工作驅(qū)動強(qiáng)度 的情況下,選擇弱電流驅(qū)動會更好的控制電磁干擾現(xiàn)象。
另外,基于GSMC 180nm工藝庫,選擇具有施密特觸發(fā)特性的IO,可以有效地平緩輸入信號中帶進(jìn)來的尖峰或者噪聲信號等,對芯片的電磁抗擾度有所幫助。[page]

汽車電子MCU測試方案

IEC61967標(biāo)準(zhǔn)是國際電工 委員會制定的有關(guān)集成電路電磁發(fā)射的標(biāo)準(zhǔn),用于頻率為150kHz到1GHz的集成電路電磁發(fā)射測試。標(biāo)準(zhǔn)中涉及到輻射和傳導(dǎo)兩類測試方法,由于傳導(dǎo)方式 的電磁干擾帶給芯片應(yīng)用上的影響更大一些,本次試驗選取IEC61967-4直接耦合法進(jìn)行測試。該方法又分為1Ω測試法和150Ω測試法,1Ω測試法用 來測試接地引腳上的總干擾電流,150Ω測試法用來測試輸出端口的干擾電壓。
在測試時,需要在進(jìn)行測試的電路中接入串聯(lián)電阻 為1Ω的電流探針(探針即為1Ω測試網(wǎng)絡(luò),已經(jīng)集成在EMC測試板的芯片地端與PCB地平面之間),49Ω串聯(lián)放置為了形成50Ω匹配,用接收機(jī)測量射頻 電流流經(jīng)該電阻時產(chǎn)生的射頻電壓,所測得的電壓應(yīng)為所有流回到集成電路的射頻電流在電流探頭上產(chǎn)生電壓的總和,測得的電壓值可以換算為流過探針的電流,測 試環(huán)境圖如圖1所示。
1Ω測試環(huán)境
圖1 1Ω測試環(huán)境

在 150Ω測試中,集成電路的引腳通過標(biāo)準(zhǔn)規(guī)定的匹配網(wǎng)絡(luò)接到測試接收機(jī),通過150Ω探針(探針即為150Ω測試網(wǎng)絡(luò),已經(jīng)集成在EMC測試板上)可以測 量SSN在輸入輸出端口和電源兩類引腳上的傳導(dǎo)干擾,通過計算可以將接收機(jī)測量的電壓轉(zhuǎn)換為噪聲電壓幅值,測試環(huán)境圖如圖2所示。

150Ω測試環(huán)境
圖2 150Ω測試環(huán)境

下面是針對EMI進(jìn)行的1Ω和150Ω測試步驟,包括測試前準(zhǔn)備工作以及測試數(shù)據(jù)分析等。

3.1 測試前裝備工作
①環(huán)境溫度
本次實驗集中在晚間進(jìn)行,現(xiàn)場溫度控制在23±2℃范圍內(nèi),符合標(biāo)準(zhǔn)要求。
②環(huán)境噪聲電平
將DUT(被測設(shè)備)固定在實驗臺上且為斷電狀態(tài),用EMI接收機(jī)測量殘留噪聲。本次實驗環(huán)境噪聲電平在可接受的測試要求內(nèi),詳情請參看圖6。
③其他環(huán)境條件
所有其他可能影響測試結(jié)果的環(huán)境條件,例如環(huán)境濕度。本次實驗所測得的相對濕度為45%RH左右。
④確認(rèn)工作狀態(tài)
給DUT供電并檢查確認(rèn)IC處于正常的工作狀態(tài),同時在實驗時保持周圍的測試條件不變。[page]

3.2 1Ω測試
(1)將SMA連接線一端連接到測試板,另一端連接到接收 機(jī)(安捷倫N9030,內(nèi)置N141A電磁兼容測試軟件),將EMI接收機(jī)的測量頻率范圍設(shè)置為150kHz到1GHz,根據(jù)標(biāo)準(zhǔn)對測試操作的要求,分成 150kHz~30MHz(RBW 為9kHz)和30MHz~1GHz(RBW 為120kHz)兩段。下面測試圖中綠色邊框范圍內(nèi)的是150kHz~30MHz,范圍外的是30MHz~1GHz。
結(jié)合汽車電子MCU 端口特性以及標(biāo)準(zhǔn)要求,將接地端口與1Ω網(wǎng)絡(luò)相連,再與SMA口相接,引入EMI接收機(jī)進(jìn)行監(jiān)控,原理圖如圖3、圖4所示。
芯片的地網(wǎng)絡(luò)引腳
圖3 芯片的地網(wǎng)絡(luò)引腳
1Ω網(wǎng)絡(luò)
圖4 1Ω網(wǎng)絡(luò)

(2)選取可能影響EMC特性的因素,在時鐘上分別測試10MHz、20MHz以及77MHz頻率下電磁干擾大小數(shù)值,在測試功能上選取模數(shù)轉(zhuǎn)換程序ADC;
(3)測量每一段頻譜內(nèi)可能出現(xiàn)的干擾,提取各個諧波的包絡(luò)值,接收機(jī)的電壓可以換算為流過探針的電流。測試儀器以及EMC測試板如圖5所示;

實際測試環(huán)境
圖5 實際測試環(huán)境

(4)在對每個頻率點(diǎn)測試的時候要進(jìn)行多次測量,以便排除偶然因素的干擾。下面是各個測試情況的說明;
①時鐘采用外部晶振10MHz,燒錄SRAM 中的程序為ADC。圖6左側(cè)為未上電時的環(huán)境噪聲信號,右側(cè)為上電但未運(yùn)行程序的測量結(jié)果。[page]
斷電vs.上電
圖6 斷電vs.上電

通過對比可以得出上電之后在整個頻譜范圍內(nèi)干擾強(qiáng)度變大,時鐘的固定周期將使電磁輻射集中在時鐘基波和諧波附近很窄的頻譜范圍內(nèi)。根據(jù)傅里葉級數(shù)展開公式可以得出,在時鐘倍頻處的頻點(diǎn)其干擾值也越大,所以在10MHz、20MHz等倍頻點(diǎn)處的現(xiàn)象更明顯,
②為了進(jìn)一步對比,運(yùn)行ADC程序,分別在10MHz、20MHz以及77MHz時鐘下進(jìn)行測試,比較不同時鐘接地引腳總干擾電流大小,測試結(jié)果如圖7、圖8、圖9所示。
10MHz—ADC測試圖
圖7 10MHz—ADC測試圖
20MHz—ADC測試圖
圖8 20MHz—ADC測試圖
77MHz—ADC測試圖
圖9 77MHz—ADC測試圖
10/20/77MHz—ADC測試數(shù)據(jù)整理
圖10 10/20/77MHz—ADC測試數(shù)據(jù)整理

圖 7、圖8、圖9分別是10MHz、20MHz和77MHz的測試圖,圖10是整理后的數(shù)據(jù)。通過對比可以得出,頻譜大致集中在100MHz以內(nèi),在對應(yīng)工 作時鐘的主頻點(diǎn)處干擾值最大,10MHz、20MHz情況下在相應(yīng)倍頻點(diǎn)(如40MHz、60MHz等頻點(diǎn))附近的干擾值也比較集中。[page]
提 取數(shù)據(jù)得到10 MHz時峰值點(diǎn)為9.999MHz(62.643dBμV),20 MHz 時的峰值點(diǎn)為20.002MHz(61.692dBμV),77MHz時的峰值點(diǎn)為19.264MHz(48.049dBμV)以及 77.042MHz(47.316dBμV)。可以看出,77MHz時干擾強(qiáng)度和密度反而要弱于20MHz,可能是由于77MHz是MCU工作的極限時 鐘,此時工作性能受到一定影響,導(dǎo)致測試的結(jié)果有所不同。
③由于汽車電子MCU的工作時鐘可以選擇外部晶振或者內(nèi)部PLL倍頻,所以要對兩種情況分別測試,以便比較是否有差別。運(yùn)行ADC程序后的測試結(jié)果如圖11所示。
PLL vs.外部晶振(10MHz)
圖11 PLL vs.外部晶振(10MHz)

從圖11中可以看出,在頻譜范圍內(nèi)各個峰值點(diǎn)的分布大致相同,整個頻譜范圍內(nèi)沒有明顯差異,MCU通過外部晶振或PLL倍頻兩種方式測得的結(jié)果基本一致,時鐘源選擇上不會對芯片的電磁干擾強(qiáng)度帶來影響。


3.3 150Ω測試
(1)設(shè)備裝置連接同1Ω測試法的步驟①;
(2) 根據(jù)芯片電源類型,電源分為4路,分別是VDD1(數(shù)字IO 供電的5V 電源信號)、VDD2(為ADC和PLL供電的LDO 的5V 電壓)、VDD3(數(shù)字邏輯LDO的5V電壓輸入)和VDD4(Flash的5V電壓輸入)。可單獨(dú)對每一路電源的干擾噪聲進(jìn)行捕捉,連接方式與1Ω 測試法步驟②相同,如圖12所示;
VDD連接150Ω網(wǎng)絡(luò)145
圖12 VDD連接150Ω網(wǎng)絡(luò)145

(3)根據(jù)汽車電子MCU應(yīng)用特點(diǎn),選取最為典型的PWM、CAN 程序,為了方便以后對眾多引腳進(jìn)行單獨(dú)測量,將P0、P1、P2(P3未涉及到外設(shè)功能復(fù)用)端口共24個引腳進(jìn)行了開關(guān)控制,再通過150Ω耦合網(wǎng)絡(luò)連 接到EMI接收機(jī),圖13是P0端口的電路原理圖,P1和P2的原理圖同P0。
IO-P0連接150Ω網(wǎng)絡(luò)
圖13 IO-P0連接150Ω網(wǎng)絡(luò)

[page](4)重復(fù)測試多次,得到較多測試樣本,經(jīng)過整理,下面是各個測試情況的說明。
①從電源端口結(jié)果來看,區(qū)別很小,下面以VDD1為例進(jìn)行分析說明。VDD1測試選取了ADC和counter(數(shù)字計數(shù)器)的程序,以比較不同類別的程序?qū)?shù)字供電是否有影響,測試結(jié)果如圖14、圖15所示。
在 10MHz和20MHz時鐘上對比,ADC最高峰值分別為35.827dBμV、43.517dBμV;counter的最高峰值為 35.899dBμV、43.271dBμV。可以得出頻率越高,干擾強(qiáng)度越大。但就兩類程序橫向?qū)Ρ葋砜矗Y(jié)果基本上一致。另外還發(fā)現(xiàn) 60~300MHz和550~650MHz兩處集中的干擾頻譜,可見電源處的干擾在高頻附近比較明顯。
②PWM 功能測試
雙通道模式下,在不同占空比和周期大小情況下,測試對應(yīng)P口引腳處傳導(dǎo)發(fā)射強(qiáng)度的大小,測試結(jié)果如圖16、圖17所示。
從圖16中的干擾密度可看出時鐘對電磁干擾影響程度。在圖17中,由于period和duty較長,測試結(jié)果相差不大,此時時鐘頻率變成次要因素,主要因素取決于輸出引腳處高低電平變化周期長短。

③CAN功能測試
運(yùn)行Loopback(回路模式)程序,在不同時鐘頻率下進(jìn)行比較,測試結(jié)果如圖18、圖19所示。

從 圖16~19中觀察,隨著時鐘頻率變大,TX和RX端口的傳導(dǎo)輻射強(qiáng)度也變大。對于RX端口,10/40MHz頻點(diǎn)附近的干擾密度比較大,且在40MHz 時候現(xiàn)象更明顯,捕捉到連續(xù)三個頻點(diǎn)(圖18右側(cè)標(biāo)注),分別是39.060 MHz(71.063dBμV)、39.360MHz(67.447dBμV)、40.020MHz(39.171dBμV),兩個時鐘下的峰值都在 70~85dBμV 之間,但一般都在10MHz以下,應(yīng)該是受低頻某一頻點(diǎn)的影響較明顯。
對于TX端口,10/40MHz頻點(diǎn)附近的干擾密度沒有RX明顯,峰值也都在70~85dBμV 之間,且發(fā)生在10MHz以下,和RX的特點(diǎn)大致相同。

測試結(jié)果分析

從測試數(shù)據(jù)結(jié)果可以總結(jié)出以下幾點(diǎn):
① 在時鐘頻率上,從10 MHz到40 MHz、77MHz,干擾強(qiáng)度或是密度在整體上都會增加,可以是一小段頻譜或者是整個頻譜范圍內(nèi),這與測試對象關(guān)系比較大。分析原因不難發(fā)現(xiàn),由于時鐘電 路產(chǎn)生的時鐘信號一般都是周期信號,其頻譜是離散的,離散譜的能量集中在有限的頻率上,又由于系統(tǒng)中各個部分的時鐘信號通常由同一時鐘分頻、倍頻得到,它 們的譜線之間也是倍頻關(guān)系,會重疊起來進(jìn)而增大輻射的幅值。
②在程序燒寫方式上,外部晶振或PLL倍頻兩種方式測得的結(jié)果基本一致,整個頻譜范圍內(nèi)沒有明顯差異,時鐘源選擇上不會對芯片的電磁干擾強(qiáng)度帶來影響。
③從VDD1測試結(jié)果來看,除了得出頻率越高,干擾強(qiáng)度越大之外,還發(fā)現(xiàn)出現(xiàn)干擾的頻譜范圍分別在60~300MHz和550~650MHz兩處,可見電源處的干擾在高頻附近比較明顯。
④ 對于PWM 功能,通過配置輸出波形周期和占空比大小,會導(dǎo)致在不同時鐘下產(chǎn)生的電磁干擾強(qiáng)度有所差異。由于雙通道模式下寄存器為16bit(原單通道模式為 8bit),此時周期和占空比可配置的數(shù)值變大,PWM 波輸出引腳處的高低電平翻轉(zhuǎn)周期就取決于周期和占空比的設(shè)置,與時鐘的關(guān)系變得沒有之前如此緊密,時鐘變成了次要因素。由此建議在滿足功能要求的前提下, 使用PWM 功能時盡量將周期和占空比數(shù)值變得大一些,這樣會較好地改進(jìn)EMC性能;
⑤對于CAN 總線來講,通過10 MHz和40MHz時鐘對比,當(dāng)合理地降低時鐘工作頻率,會使一大段頻譜范圍內(nèi)的干擾值降低,從整體上較好的控制EMI帶來的影響。

結(jié)束語

對 于微電子行業(yè)來說,芯片級電磁兼容性的設(shè)計與測試已經(jīng)成為一個非常重要的主題。實際上,如果不對集成電路電磁輻射及抗擾度方面進(jìn)行深入的研究,就很難滿足 電子設(shè)備電磁兼容性方面的需要。本文通過對設(shè)計方法的引入,并進(jìn)一步通過測試方案去總結(jié)歸納影響電磁發(fā)射的因素和原因,從而間接證明了設(shè)計方法的必要性和 重要性。

要采購探針么,點(diǎn)這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉

欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡
91麻豆国产福利在线观看| 成人做爰69片免费看网站| 国产午夜亚洲精品羞羞网站| 欧美在线影院一区二区| 国产美女一区二区三区| 日韩精品一二三区| 亚洲一区二区三区国产| 国产精品女同互慰在线看| 国产日产欧美一区| 欧美xxx久久| 精品国产一区二区三区久久影院 | 国产精品久久久久久久久免费樱桃 | 粉嫩高潮美女一区二区三区| 狠狠久久亚洲欧美| 免费在线观看一区| 久久狠狠亚洲综合| 青青青爽久久午夜综合久久午夜| 午夜久久久久久| 亚洲午夜成aⅴ人片| 亚洲3atv精品一区二区三区| 亚洲综合精品自拍| 亚洲成人在线免费| 美腿丝袜亚洲色图| 国产精品白丝jk黑袜喷水| 老司机午夜精品99久久| 精品一区二区综合| 成人美女视频在线看| 99久久精品一区| 欧日韩精品视频| 欧美精品久久一区| 精品处破学生在线二十三| 久久久精品黄色| ...av二区三区久久精品| 一区二区三区蜜桃网| 丝袜亚洲另类丝袜在线| 久久99精品国产91久久来源| 国产福利一区二区三区视频| aaa亚洲精品| 欧美精品丝袜久久久中文字幕| 日韩欧美国产不卡| 欧美激情一区二区三区不卡| 亚洲精品免费播放| 精品一区二区三区免费观看| 国产精品夜夜爽| 51精品秘密在线观看| 国产片一区二区三区| 亚洲激情一二三区| 久久国产精品第一页| 94-欧美-setu| 91色婷婷久久久久合中文| 正在播放一区二区| **欧美大码日韩| 久久99精品国产.久久久久 | 国产精品一区不卡| 欧美性色黄大片| 欧美一区二区三区免费观看视频 | 99九九99九九九视频精品| 欧美精品三级日韩久久| 国产无遮挡一区二区三区毛片日本| 亚洲婷婷在线视频| 国产成人精品aa毛片| 欧美视频在线观看一区二区| 中文字幕av资源一区| 日本aⅴ亚洲精品中文乱码| 不卡高清视频专区| 久久精品一区二区三区不卡 | 美女视频一区二区三区| 色狠狠综合天天综合综合| 日韩美女一区二区三区四区| 成人欧美一区二区三区视频网页| 日本欧美一区二区三区| 91在线免费视频观看| 精品成a人在线观看| 天天操天天干天天综合网| 99精品欧美一区二区三区小说| 亚洲精品在线三区| 美女国产一区二区三区| 欧美日韩久久一区二区| 夜夜夜精品看看| 色哟哟在线观看一区二区三区| 国产女同性恋一区二区| 国产精品亚洲人在线观看| 欧美大片日本大片免费观看| 日韩综合在线视频| 3d成人h动漫网站入口| 亚洲成人精品影院| 欧美影视一区在线| 香蕉久久一区二区不卡无毒影院| 日本精品一区二区三区高清 | 蜜桃视频在线观看一区二区| 欧美浪妇xxxx高跟鞋交| 天天操天天综合网| 69堂精品视频| 精品在线观看视频| 久久精品一区二区三区不卡| 成人亚洲一区二区一| 国产精品视频观看| 成人精品视频网站| 亚洲欧美中日韩| 国产电影一区在线| 欧美经典一区二区| 成人精品小蝌蚪| 国产精品区一区二区三区| 99综合影院在线| 亚洲最色的网站| 91麻豆精品国产91久久久| 久久精品国产一区二区三| 337p日本欧洲亚洲大胆精品| 国产一区二区三区在线观看免费 | 亚洲一区二区三区在线| 欧美影院精品一区| 久久精品久久久精品美女| 国产日本欧洲亚洲| 欧美在线观看18| 国内成人免费视频| 国产精品国产三级国产aⅴ原创| 成人精品国产一区二区4080| 亚洲精品一卡二卡| 日韩视频一区二区三区| 国产成人综合在线播放| 一区二区三区在线视频播放| 欧美一区二区三区免费| 懂色av一区二区三区免费看| 亚洲一区免费观看| 亚洲精品在线电影| 欧美伊人久久久久久午夜久久久久| 男女男精品视频网| 亚洲丝袜另类动漫二区| 国产日产欧美一区二区三区 | 国产超碰在线一区| 久久精品国产秦先生| 天堂av在线一区| 亚洲国产精品久久久久婷婷884| 中文字幕一区二区三区四区不卡 | 国产69精品久久久久777| 男男gaygay亚洲| 日韩精品亚洲一区| 日韩二区三区在线观看| 亚洲成人一区二区在线观看| 亚洲欧美日韩成人高清在线一区| 国产精品系列在线| 中文字幕精品综合| 国产色一区二区| 国产精品日韩成人| 亚洲婷婷综合久久一本伊一区| 国产精品免费aⅴ片在线观看| 国产视频一区不卡| 成人免费小视频| 亚洲人成网站在线| 亚洲综合在线免费观看| 亚洲在线观看免费| 在线看日韩精品电影| 欧美一区二区女人| 国产精品小仙女| 99综合影院在线| 久久99精品一区二区三区| 亚洲大片一区二区三区| 亚洲成a人v欧美综合天堂下载| 亚洲h精品动漫在线观看| 婷婷中文字幕一区三区| 美国一区二区三区在线播放| 蜜臀av性久久久久av蜜臀妖精| 国内精品免费在线观看| 成人亚洲一区二区一| 欧美性猛交xxxx乱大交退制版 | 专区另类欧美日韩| 亚洲国产精品精华液网站| 日本女人一区二区三区| 国产精品一线二线三线精华| 99久久婷婷国产综合精品电影| 欧美视频一区二区三区在线观看 | 亚洲免费在线播放| 日韩国产精品久久久| 国产激情偷乱视频一区二区三区 | 久久这里只有精品视频网| 国产精品区一区二区三| 亚洲v日本v欧美v久久精品| 国产真实精品久久二三区| av中文一区二区三区| 欧美一区二区三区成人| 国产精品卡一卡二| 秋霞成人午夜伦在线观看| av电影一区二区| 欧美精品一区二区三区四区| 亚洲天堂av老司机| 国产精品一线二线三线| 欧美亚洲动漫精品| 国产精品看片你懂得| 久草精品在线观看| 欧美中文字幕久久| 国产精品免费观看视频| 精品一区二区在线看| 欧美午夜精品久久久久久孕妇| 久久精品人人做| 蜜臀久久99精品久久久久宅男| 99免费精品在线| 中文字幕免费一区| 精品一区二区三区久久| 制服视频三区第一页精品| 一卡二卡三卡日韩欧美|