欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡

你的位置:首頁 > 傳感技術 > 正文

面向現代視覺系統的低功耗圖像傳感器

發布時間:2024-05-28 責任編輯:lina

【導讀】在更快的連接速度、更高的自動化程度和更智能系統的推動下,工業4.0加快了視覺技術在制造業中的應用,并將智能化引入到以往簡單的數據采集系統中。上一代視覺系統負責捕捉圖像,對其進行封裝以供傳輸,并為后續的FPGA、ASIC或昂貴的SoC等器件提供圖像數據進行處理。如今,工業5.0更進一步,通過在整個數據通路中融入人工智能(AI)與機器學習(ML),實現大規模定制化。攝像頭變得智能化,具備在應用層面處理的圖像數據,僅輸出用于決策的元數據。


在更快的連接速度、更高的自動化程度和更智能系統的推動下,工業4.0加快了視覺技術在制造業中的應用,并將智能化引入到以往簡單的數據采集系統中。上一代視覺系統負責捕捉圖像,對其進行封裝以供傳輸,并為后續的FPGA、ASIC或昂貴的SoC等器件提供圖像數據進行處理。如今,工業5.0更進一步,通過在整個數據通路中融入人工智能(AI)與機器學習(ML),實現大規模定制化。攝像頭變得智能化,具備在應用層面處理的圖像數據,僅輸出用于決策的元數據。


這兩代之間的關鍵發展是關注邊緣端發生的變化。我們世界本質上以模擬為主,許多幫助我們日常生活的電子與機電(EEM)系統都是由各類感知輸入驅動的。視覺(光)、溫度(熱)、音頻(聲)、距離與位置、壓力(觸覺)等系統邊緣端的電子傳感器采集這些物理輸入,并將其轉化為處理后的數據,以實現智能化并方便決策制定。工業4.0提出了對這類傳感器智能和高效的需求。如今,非工業及商業應用領域的眾多傳感器不斷發展,從基礎類型發展到符合工業自動化流程和標準的增強版本。


在大規模采用傳感器的同時,人們也在推動更低功耗的電池驅動智能設備廣泛應用。功耗給視覺系統帶來了不同的挑戰,而圖像傳感器如何以創新的方法解決這些挑戰,同時提供卓越的性能,將成為視覺系統的差異化因素。


圖像傳感器--視覺感知的輸入機制


視覺感知已成為在邊緣端采集數據的重要方式之一,收集到的圖像數據能夠被快速且高效地用于決策制定。例如,若無視覺傳感器,場景中的物體需要無數個特定的傳感器來傳達場景的構成。這會產生大量數據并需要龐大的處理工作,或許還得靠好運氣,才能得到場景的真實呈現。另外,在高效的系統中,一張圖像就可以在一幀數據中傳達場景中的所有信息。


這種簡便的數據表現形式使圖像傳感器得以加速發展,為智能手機等消費類移動產品提供支持,其分辨率超過一億像素,在硬件和軟件的支持下,為靜態圖像和視頻流提供卓越的細節特征。由于移動產品主要服務于娛樂和個人應用,因此其制定決策的目標略有不同。然而,面向汽車、工業和商業應用的視覺系統服務于高度以目標為導向的需求,其中許多系統使用(傳感器)輸出進行基于機器的決策,并要求在分辨率、幀率和功耗之間達到精細平衡。


隨著邊緣智能的重要性日益增強,這些應用必須適應不同用例需求。現在,許多應用都需要更高的分辨率和更出色的整體性能,以輔助計算機視覺、機器視覺和自動化決的策系統。很多情況下,人們非常渴望獲得更豐富的細節,因為這些細節有助于減少錯誤決策。隨著分辨率的提高,圖像傳感器中的像素數量也會增加,相應地,傳感器向圖像信號處理器(ISP)或系統芯片(SoC)提供的圖像數據量也會增加。傳感器產生的大量圖像數據以及ISP/SoC對這些數據的處理會導致高功耗,從而給視覺系統設計帶來巨大負擔。


面向現代視覺系統的低功耗圖像傳感器

圖1 圖像傳感器產生的數據隨分辨率和幀速率成指數增長


現在,設計人員需要應對高功率電子元件帶來的高功率傳輸、功耗和系統物料清單(BOM)成本等問題。雖然降低功耗是大勢所趨,但熱管理也是一個挑戰,因為大多數視覺系統都依賴對流氣流來散發系統中產生的熱量。圖像傳感器對熱量高度敏感,如果不能選擇適當的設計并有效管理上述因素,就會產生不可靠的視覺系統。


一切始于量子效率


圖像傳感器的量子效率(QE)是指光電二極管最大限度地將入射光子轉換成電子的能力。眾所周知,QE 越高,圖像亮度越好。更高的 QE 值在弱光條件下非常重要,這通常通過使用更大的像素尺寸或在場景中添加可見光或不可見光來實現。無論哪種方法,都會增加視覺系統必須支持的成本、功耗和空間,并可能會根據圖像傳感器的性能和場景條件呈指數級增長。


面向現代視覺系統的低功耗圖像傳感器

圖2 不同波長下可比較像素尺寸的歸一化量子效率曲線


這在通常使用紅外發光二極管(IR LED)的不可見照明情況下尤其嚴重,其產生的光波長為850nm和940nm。這些波長能被圖像傳感器探測到,但人眼無法察覺。在行業中,這通常被稱為 "主動照明"。 紅外發光二極管需要供電并產生功耗,占用大量空間,并顯著增加系統 BOM成本。在近紅外光譜中具有高量子效率的圖像傳感器能夠在不犧牲圖像質量的前提下,減少其使用數量、降低光照強度以及總體BOM成本。


圖像質量更高,總體擁有成本更低


重要的是要確保圖像傳感器像素提供的高 QE 不會受到數據通路其他部分噪聲的影響,從而影響整體圖像質量。例如,如果像素結構沒有足夠的像素間隔,像素間串擾就會降低調制傳遞函數(MTF)和對圖像的對比度/清晰度,最終影響圖像質量。另一個可能造成損害的因素是讀出電路性能不佳導致的高讀取噪聲。


圖像質量不佳會給ISP/SoC帶來不必要的負擔,使其需要處理更多的數據,從而降低視覺系統的整體幀率,或者以更高的時鐘頻率運行來維持相同的端到端時序。在前一種情況下,視覺系統的效率會大大降低,而無論哪種情況,系統最終都會產生更多的功耗。為了應對處理負擔,可能需要配備更先進資源的ISP/SoC,這將進一步增加總體BOM成本。而優秀的圖像輸出質量能夠緩解上述種種不足,降低視覺系統的總體擁有成本。


子采樣模式


安森美(onsemi)公司的圖像傳感器(例如HyperluxTM LP產品系列)已經意識到這些操作需求,并集成了多種子采樣模式。這些模式,如合并(Binning)、裁剪(Cropping)和跳采(Skipping),能夠大大減少生成和傳輸所需的帶寬。


面向現代視覺系統的低功耗圖像傳感器


安森美Hyperlux LP系列產品


這些功能使視覺系統變得非常智能,能夠根據用例需求選擇最優的功耗/性能配置。例如,在生物識別掃描儀中,現在可以利用配備500萬像素傳感器陣列的單個系統,以逐漸增強的掃描方式,完成子采樣模式下的單個指紋掃描到全分辨率面部掃描。最重要的是,ISP/SoC接收到的數據量減少,從而降低了其自身及整個視覺系統的功耗。


縮減數據規模


高分辨率圖像傳感器會占用大量帶寬來輸出數據。例如,以60幀/秒速度工作的2000萬像素傳感器將傳輸12 Gbps圖像數據,這些數據不僅需要在傳感器內部的高速接口中妥善處理,還需要由接收這些數據的ISP/SoC進行處理。處理如此龐大的數據需要在這些處理引擎中投入昂貴且專用的資源和電力,并可能導致大量的功耗/熱管理問題。此外,接口速度的限制也增加了這一挑戰。


在大多數應用中,可能只有小部分時間需要在全分辨率下全速運行,其余時間則僅需較低分辨率。雖然子采樣模式可以降低帶寬并有其自身優勢,但在分辨率選擇或場景完整性方面會受到一定的限制。


傳感器內的縮放器有助于克服這些限制,有效滿足低分辨率操作的需求。它們能夠在源頭控制帶寬,而不是由 ISP/SoC 管理。它們能夠在最大程度上提供精細的粒度控制,同時保持完整的視場角(FOV)。安森美 AR2020 圖像傳感器(Hyperlux LP 產品系列的 2000萬像素成員)的圖像縮放算法非常復雜,即使在分辨率大幅縮放的情況下,也能提供出色的圖像質量。舉例來說,雖然獲取遠距離物體的細節確實需要 2000 萬像素,但可能只需要圖像的某個特定區域,而不是整個圖像。通過對這一動態定義的區域進行裁剪或縮放,就可以獲得 2000萬像素傳感器的優勢,而無需持續處理相當于 2000萬像素的數據。


面向現代視覺系統的低功耗圖像傳感器

圖4 scaling比binning產生的偽影更少,從而提高圖像輸出效果


盡可能休眠,按需喚醒


傳感器可以處于極低的工作狀態,在大多數工作時間內以低分辨率、最低幀速率運行。當檢測到運動時,它會切換到預定的配置--運動喚醒(WOM)模式。圖像傳感器有能力處理這些變化,并讓 ISP/SoC 將其切換到所需的模式/配置。它還能進一步屏蔽與應用無關的運動區域,從而使傳感器和視覺系統更加精準、高效。以前,這一功能是在處理器中完成的,但在傳感器上實現這一功能可減少系統資源和功耗。


面向現代視覺系統的低功耗圖像傳感器

圖5 運動喚醒等功能使視覺系統具有高度的目標驅動性


我們可以看到這些功能在電池供電的應用、智能門禁系統、零售掃描儀、醫療監測系統等類似應用中產生的深遠影響。電池供電的應用從這些傳感器中獲得了最大的好處,因為它們可以最大限度地降低系統功耗。在4K視頻門鈴應用中,像安森美AR0830這樣的800 萬像素圖像傳感器在滿負荷狀態下會傳輸6G數據,但現在它可以在WOM模式下運行超過98%的工作時間。在預檢測階段,它產生/傳輸的數據量極低,整個視覺系統的運行功耗僅為全工作模式下的一小部分。


迄今為止,圖像傳感器作為數據捕捉和數據傳輸器件一直表現出色。正如安森美 Hyperlux LP 產品系列中所展現的那樣,上述趨勢和進步使這些傳感器成為內置智能應用的強大邊緣器件。通過集成更好的像素技術、可配置的智能關注區域、運動檢測等功能,現在可以被設計用來滿足特定的用例需求,從而打造出性能卓越且功耗極低的差異化高效視覺系統。

(作者:Onsemi公司 Ganesh Narayanaswamy)


免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


推薦閱讀:

探秘EVSE,全面解析電動汽車供電設備

電源轉換器熱阻特性分析開架式與基板式密封式的對比

常見的傳統電源還能再戰智能邊緣時代嗎?

224G 系統需要多大的 ASIC 封裝尺寸?

這幾種非隔離電源拓撲 你用過哪些?



特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索

關閉

?

關閉

欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡
一区二区三区欧美亚洲| 日韩一区二区三| 精品制服美女丁香| 六月丁香综合在线视频| 调教+趴+乳夹+国产+精品| 亚洲高清在线视频| 亚洲第一综合色| 午夜精品福利一区二区三区av | 蜜臀久久99精品久久久画质超高清 | 亚洲精品视频自拍| 一区二区三区不卡视频| 一区二区三区成人| 日韩经典一区二区| 狠狠色丁香久久婷婷综| 国产精品18久久久久久久久久久久 | 国产精品国产三级国产aⅴ无密码| 久久夜色精品一区| 精品久久久久久久久久久久包黑料 | 国产精品久久久一区麻豆最新章节| 国产日韩v精品一区二区| 国产精品每日更新在线播放网址| 国产精品你懂的在线欣赏| 亚洲人妖av一区二区| 亚洲va韩国va欧美va精品| 韩日av一区二区| 成人黄色一级视频| 欧美精品久久天天躁| 国产午夜久久久久| 亚洲高清不卡在线观看| 国产一区激情在线| 欧美午夜宅男影院| 国产亚洲综合性久久久影院| 一区二区中文视频| 日本va欧美va瓶| 99久久99久久精品免费观看| 69av一区二区三区| 中文字幕一区二区三区四区不卡 | 99re亚洲国产精品| 777a∨成人精品桃花网| 国产拍揄自揄精品视频麻豆| 亚洲综合一区二区| 国产精品一二三| 欧美日韩一区国产| 国产精品久久看| 麻豆精品一区二区综合av| 99在线精品一区二区三区| 91精品国产一区二区三区香蕉 | 色综合一个色综合| 欧美一二三区精品| 一区二区三区欧美视频| 国产精品 欧美精品| 在线日韩一区二区| 自拍偷自拍亚洲精品播放| 精品综合久久久久久8888| 欧美性猛交一区二区三区精品| 国产婷婷一区二区| 麻豆91免费观看| 在线观看亚洲一区| 国产精品高清亚洲| 成人精品gif动图一区| 精品免费国产二区三区| 奇米影视在线99精品| 在线免费精品视频| 亚洲天堂中文字幕| va亚洲va日韩不卡在线观看| 久久久久99精品国产片| 奇米精品一区二区三区在线观看一 | 成人综合在线视频| 国产视频一区在线观看| 久久se精品一区二区| 欧美日韩视频不卡| 亚洲成人精品一区| 欧美视频一区在线| 亚洲影院免费观看| 欧美系列亚洲系列| 亚洲第一会所有码转帖| 91行情网站电视在线观看高清版| 最新成人av在线| av电影在线观看一区| 久久精品视频网| 成年人国产精品| 久久久亚洲精品石原莉奈 | 国产精品成人在线观看| 国产91精品欧美| 欧美国产日韩亚洲一区| 成人激情小说网站| 国产精品久久久久久久久图文区| 高清av一区二区| 亚洲视频一二区| 欧美三区在线观看| 精品一区二区三区影院在线午夜| 精品国产不卡一区二区三区| 懂色av中文字幕一区二区三区| 中文字幕欧美一| 欧美剧在线免费观看网站| 经典一区二区三区| 中文字幕在线播放不卡一区| 欧美唯美清纯偷拍| 精品一区二区日韩| 亚洲国产精品激情在线观看| 在线播放日韩导航| 国产精品自在欧美一区| 欧美片网站yy| 性做久久久久久免费观看欧美| 日韩美女主播在线视频一区二区三区 | 亚洲精品国产高清久久伦理二区| 欧美欧美欧美欧美| 国内精品久久久久影院一蜜桃| 欧美韩国日本一区| 欧美日韩视频第一区| 国产成人午夜精品影院观看视频| 亚洲免费视频成人| 久久美女艺术照精彩视频福利播放 | 日本美女一区二区三区| 国产日本欧洲亚洲| 欧美挠脚心视频网站| 大白屁股一区二区视频| 青青草97国产精品免费观看| 18成人在线观看| 精品理论电影在线观看| 欧洲一区在线电影| 粉嫩绯色av一区二区在线观看| 天天色 色综合| 综合电影一区二区三区| 久久久午夜电影| 欧美高清激情brazzers| av中文字幕亚洲| 国产成人精品综合在线观看| 欧美96一区二区免费视频| 中文字幕一区二区不卡| 国产喂奶挤奶一区二区三区| 在线不卡的av| 欧美日韩在线亚洲一区蜜芽| 91麻豆免费看片| 顶级嫩模精品视频在线看| 国内精品在线播放| 麻豆91精品91久久久的内涵| 午夜精品福利在线| 蜜臀av一区二区在线免费观看 | 日韩欧美成人激情| 中文字幕的久久| 日韩欧美国产三级| 丝袜美腿亚洲一区| 精品欧美乱码久久久久久| 色综合中文字幕国产 | 中文字幕成人av| 正在播放亚洲一区| 日韩一卡二卡三卡四卡| 欧美日韩视频专区在线播放| 99久久久精品| 91在线一区二区三区| 粉嫩高潮美女一区二区三区| 精品一区二区三区香蕉蜜桃| 久久 天天综合| 国产精品亚洲一区二区三区在线| 理论片日本一区| 国产乱码一区二区三区| 国产乱码精品一区二区三区五月婷| 美女网站在线免费欧美精品| 日本aⅴ精品一区二区三区| 久久草av在线| 成人sese在线| 一本色道久久综合亚洲aⅴ蜜桃| 99久久伊人精品| 欧美日韩国产一区二区三区地区| 欧美日韩精品欧美日韩精品一综合| 555夜色666亚洲国产免| 久久影院午夜论| 亚洲精品日日夜夜| 日韩精品免费专区| 国产成人av一区二区三区在线| 成人a区在线观看| 精品视频全国免费看| 精品国产乱码久久久久久老虎| 久久精品视频免费观看| 一区二区三区中文字幕精品精品| 日本视频一区二区| 不卡av电影在线播放| 欧美视频一二三区| 国产亚洲精品7777| 亚洲最新视频在线观看| 久久成人久久爱| 欧美性淫爽ww久久久久无| 精品美女在线观看| 亚洲美女视频一区| 黑人精品欧美一区二区蜜桃| 99re热这里只有精品免费视频| 欧美一区二区福利在线| 中文字幕免费在线观看视频一区| 亚洲高清视频在线| 成人蜜臀av电影| 精品国产免费久久 | 欧美视频在线不卡| 国产亚洲婷婷免费| 日韩成人av影视| 91影院在线免费观看| 欧美精品一区二区在线观看| 亚洲电影第三页| 色欧美88888久久久久久影院| 日韩一级二级三级精品视频|