欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡

你的位置:首頁 > 電源管理 > 正文

電源模塊的設計分析

發布時間:2011-03-17

電源模塊的中心議題:
  • 采用電源模塊的優點
  • 容易被忽略的電源模塊設計問題
電源模塊的解決方案:
  • 輸出噪音的測量技術設計
  • 磁學的設計
  • 同步降壓轉換器設計
  • 可靠性分析

電源模塊是可以直接貼裝在印刷電路板上的電源供應器 (參看圖1),其特點是可為專用集成電路(ASIC)、數字信號處理器 (DSP)、微處理器、存儲器、現場可編程門陣列 (FPGA) 及其他數字或模擬負載提供供電。一般來說,這類模塊稱為負載點 (POL) 電源供應系統或使用點電源供應系統 (PUPS)。由于模塊式結構的優點甚多,因此高性能電信、網絡聯系及數據通信等系統都廣泛采用各種模塊。雖然采用模塊有很多優點,但工程師設計電源模塊以至大部分板上直流/直流轉換器時,往往忽略可靠性及測量方面的問題。本文將深入探討這些問題,并分別提出相關的解決方案。

 
采用電源模塊的優點  
目前不同的供應商在市場上推出多種不同的電源模塊,而不同產品的輸入電壓、輸出功率、功能及拓撲結構等都各不相同。采用電源模塊可以節省開發時間,使產品可以更快推出市場,因此電源模塊比集成式的解決方案優勝。電源模塊還有以下多個優點:  
● 每一模塊可以分別加以嚴格測試,以確保其高度可靠,其中包括通電 測試,以便剔除不合規格的產品。相較之下,集成式的解決方案便較難測試,因為整個供電系統與電路上的其他功能系統緊密聯系一起?! ?br /> ● 不同的供應商可以按照現有的技術標準設計同一大小的模塊,為設計電源供應器的工程師提供多種不同的選擇?! ?br /> ● 每一模塊的設計及測試都按照標準性能的規定進行,有助減少采用新技術所承受的風險?! ?br /> ● 若采用集成式的解決方案,一旦電源供應系統出現問題,便需要將整塊主機板更換;若采用模塊式的設計,只要將問題模塊更換便可,這樣有助節省成本及開發時間。

容易被忽略的電源模塊設計問題
雖然采用模塊式的設計有以上的多個優點,但模塊式設計以至板上直流/直流轉換器設計也有本身的問題,很多人對這些問題認識不足,或不給予足夠的重視。以下是其中的部分問題:  
● 輸出噪音的測量;  
● 磁力系統的設計;  
● 同步降壓轉換器的擊穿現象;  
● 印刷電路板的可靠性?! ?br />
這些問題會將在下文中一一加以討論,同時還會介紹多種可解決這些問題的簡單技術。

輸出噪音的測量技術  
所有采用開關模式的電源供應器都會輸出噪音。開關頻率越高,便越需要采用正確的測量技術,以確保所量度的數據準確可靠。量度輸出噪音及其他重要數據時,可以采用圖2所示的 Tektronix 探針探頭 (一般稱為冷噴嘴探頭),以確保測量數字準確可靠,而且符合預測。這種測量技術也確保接地環路可減至最小。



進行測量時我們也要將測量儀表可能會出現傳播延遲這個因素計算在內。大部分電流探頭的傳播延遲都大于電壓探頭。因此必須同時顯示電壓及電流波形的測量便無法確保測量數字的準確度,除非利用人手將不同的延遲加以均衡?! ‰娏魈筋^也會將電感輸入電路之內。典型的電流探頭會輸入 600nH 的電感。對于高頻的電路設計來說,由于電路可承受的電感不能超過1mH,因此,經由探頭輸入的電感會影響 di/dt 電流測量的準確性,甚至令測量數字出現很大的誤差。若電感器已飽和,則可采用另一更為準確的方法測量電流量,例如,我們可以測量與電感器串行一起的小型分路電阻的電壓。[page]

磁學的設計

磁心是否可靠是另一個經常被人忽略的問題。大部分輸出電感器都采用鐵粉磁心,因為鐵粉是成本最低的物料。鐵粉磁心的成份之中大約有 95% 屬純鐵粒,而這些鐵粉粒利用有機膠合劑粘合一起。這些膠合劑也將每一鐵粉粒分隔,使磁心內外滿布透氣空間?! ¤F粉是構成磁心的原材料,但鐵粉含有小量的雜質如錳及鉻,而這些雜質會影響磁心的可靠性,影響程度視乎所含雜質的數量。我們可以利用光譜電子顯微鏡 (SEM) 仔細查看磁心的截面,以便確定雜質的相對分布情況。磁心是否可靠,關鍵在于材料是否可以預測以及其供應是否穩定可靠。  若鐵粉磁心長期處于高溫環境之中,磁心損耗可能會增加,而且損耗一旦增多,便永遠無法復原,因為有機膠合劑出現份子分解,令渦流損耗增加。這種現象可稱為熱老化,最后可能會引致磁心出現熱失控。  磁心損耗的大小受交流電通量密度、操作頻率、磁心大小及物料類別等多個不同因素影響。以高頻操作為例來說,大部分損耗屬渦流損耗。若以低頻操作,磁滯損耗反而是最大的損耗。  渦流損耗會令磁心受熱,以致效率也會受影響而下跌。產生渦流損耗的原因是以鐵磁物質造成的物體受不同時間的不同磁通影響令物體內產生循環不息的電流。我們只要選用一片片的鐵磁薄片而非實心鐵磁作為磁心的物料,便可減低渦流損耗。例如,以磁帶繞成的 Metglas 便是這樣的一種磁心。其他的鐵磁產品供應商如 Magnetics 也生產以磁帶繞成的磁心。  Micrometals  等磁心產品供應商特別為設計磁性產品的工程師提供有關磁心受熱老化的最新資料及計算方式。采用無機膠合劑的鐵粉磁心不會有受熱老化的情況出現。市場上已有這類磁心出售,Micrometals 的 200C 系列磁心便屬于這類產品。

同步降壓轉換器的擊穿現象

負載點電源供應系統 (POL) 或使用點電源供應系統 (PUPS) 等供電系統都廣泛采用同步降壓轉換器 (圖3)。這種同步降壓轉換器采用高端及低端的 MOSFET 取代傳統降壓轉換器的箝位二極管,以便降低負載電流的損耗。


工程師設計降壓轉換器時經常忽視“擊穿”的問題。每當高端及低端 MOSFET 同時全面或局部啟動時,便會出現“擊穿”的現象,使輸入電壓可以將電流直接輸送到接地?! ?br />
擊穿現象會導致電流在開關的一瞬間出現尖峰,令轉換器無法發揮其最高的效率。我們不可采用電流探頭測量擊穿的情況,因為探頭的電感會嚴重干擾電路的操作。我們可以檢查兩個場效應晶體管 (FET) 的門極/源極電壓,看看是否有尖峰出現。這是另一個檢測擊穿現象的方法。(上層 MOSFET 的門極/源極電壓可以利用差分方式加以監測。)我們可以利用以下的方法減少擊穿現象的出現?! ?br />
采用設有“固定死區時間”的控制器芯片是其中一個可行的辦法。這種控制器芯片可以確保上層 MOSFET 關閉之后會出現一段延遲時間,才讓下層 MOSFET 重新啟動。這個方法較為簡單,但真正實行時則要很小心。若死區時間太短,可能無法阻止擊穿現象的出現。若死區時間太長,電導損耗便會增加,因為底層場效應晶體管內置的二極管在整段死區時間內一直在啟動。由于這個二極管會在死區時間內導電,因此采用這個方法的系統效率便取決于底層 MOSFET 的內置二極管的特性。另一個減少擊穿的方法是采用設有“自適應死區時間”的控制器芯片。這個方法的優點是可以不斷監測上層 MOSFET 的門極/源極電壓,以便確定何時才啟動底層 MOSFET。高端 MOSFET 啟動時,會通過電感感應令低端 MOSFET 的門極出現 dv/dt 尖峰,以致推高門極電壓 (圖4)。若門極/源極電壓高至足以將之啟動,擊穿現象便會出現。

自適應死區時間控制器負責在外面監測 MOSFET 的門極電壓。因此,任何新加的外置門極電阻會分去控制器內置下拉電阻的部分電壓,以致門極電壓實際上會比控制器監控的電壓高。預測性門極驅動是另一個可行的方案,辦法是利用數字反饋電路檢測內置二極管的導電情況以及調節死區時間延遲,以便將內置二極管的導電減至最少,確保系統可以發揮最高的效率。若采用這個方法,控制器芯片需要添加更多引腳,以致芯片及電源模塊的成本會增加。  有一點需要注意,即使采用預測性門極驅動,也無法保證場效應晶體管不會因為 dv/dt 的電感感應而啟動。延遲高端 MOSFET 的啟動也有助減少擊穿情況出現。雖然這個方法可以減少或徹底消除擊穿現象,但缺點是開關損耗較高,而效率也會下降。我們若選用較好的 MOSFET,也有助縮小出現在底層 MOSFET 門極的 dv/dt 電感電壓振幅。Cgs 與 Cgd 之間的比率越高,在 MOSFET 門極上出現的電感電壓便越低擊穿的測試情況經常被人忽略,例如在負載瞬態過程中——尤其是每當負載已解除或突然減少時——控制器會不斷產生窄頻脈沖。目前大部分高電流系統都采用多相位設計,利用驅動器芯片驅動 MOSFET。但采用驅動器芯片會令擊穿問題更為復雜,尤其是當負載處于瞬態過程之中。例如,窄頻驅動脈沖的干擾,再加上驅動器出現傳播延遲,都會導致擊穿情況的出現。大部分驅動器芯片生產商都特別規定控制器的脈沖寬度必須不可低于某一最低的要求,若低于這個最低要求,便不會有脈沖輸入 MOSFET 的門極。此外,生產商也為驅動器芯片另外加設可設定死區時間 (TRT) 的功能,以增強自適應轉換定時的準確性。辦法是在可設定死區時間引腳與接地之間加設一個可用以設定死區時間的電阻,以確定高低端轉換過程中的死區時間。這個死區時間設定功能加上傳播延遲可將處于轉換過程中的互補性 MOSFET 關閉,以免同步降壓轉換器出現擊穿情況。

可靠性

任何模塊都必須在早期階段通過嚴格的測試,以確保設計完善可靠,以免在生產過程中的最后階段才出現意想不到的問題。有關模塊必須可以在客戶的系統之中進行測試,以確保所有有可能導致系統出現故障的相關因素,例如散熱扇故障、散熱扇間歇性停頓等問題都能給予充分的考慮。采用分散式結構的工程師都希望所設計的系統可以連續使用很多年而很少或甚至不會出現故障。由于測試數字顯示電源模塊的 MTBF 高達幾百萬小時,要達到這個目標并不怎樣困難。

但經常被人忽略的反而是印刷電路板的可靠性問題。照目前的趨勢看,印刷電路板的面積越縮越小,但需要處理的電流量則越來越大,因此電流密度的增加可能會引致隱蔽式或其他通孔無法執行正常功能。印刷電路板有部分隱蔽通孔必須傳送大量電流,對于這些隱蔽通孔來說,其周圍必須有足夠的銅造防護裝置為其提供保護,以確保設計更可靠耐用。這種防護裝置也可抑制 z 軸的受熱膨脹幅度,若非如此,生產過程中以及產品使用時印刷電路板的環境溫度一旦有什么變化,隱蔽通孔便會外露。工程師必須參考印刷電路板廠商的專業意見,徹底復檢印刷電路板的設計,而印刷電路板廠商可以根據他們的生產能力提供有關印刷電路板設計可靠性的專業意見。

總結
我們若要利用電源模塊組建可靠的電源供應系統,便必須解決設計可靠性的問題。上文集中討論幾個主要問題,其中包括鐵粉磁心的可靠性、磁系統的特性、同步降壓轉換器的擊穿現象以及高電流系統印刷電路板的可靠性等問題。



要采購電源模塊么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索

關閉

?

關閉

欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡
亚洲卡通动漫在线| 欧美色爱综合网| 久久综合色婷婷| av激情综合网| 国产在线国偷精品产拍免费yy| 国产精品国产精品国产专区不片| 精品久久国产97色综合| 成人免费毛片a| 蜜臀a∨国产成人精品| 亚洲视频电影在线| 中文字幕日韩精品一区| 精品国产91乱码一区二区三区| 欧美日韩国产欧美日美国产精品| 99在线热播精品免费| 国产精品一区二区久激情瑜伽| 国产精品不卡在线观看| 久久久777精品电影网影网| 精品久久久久久久人人人人传媒| 日韩欧美一卡二卡| 欧美一区二区网站| 日韩欧美一区二区视频| 91精品国产综合久久精品图片| 欧美日韩亚洲综合在线 | 欧美国产日本视频| 国产人妖乱国产精品人妖| 精品欧美一区二区三区精品久久| 7777精品伊人久久久大香线蕉 | 香港成人在线视频| 无码av免费一区二区三区试看| 亚洲精品乱码久久久久久黑人 | 亚洲第一综合色| 夜夜精品浪潮av一区二区三区| 亚洲欧美激情小说另类| 一区二区三区在线视频免费| 午夜免费欧美电影| 视频一区免费在线观看| 亚洲你懂的在线视频| 亚洲自拍偷拍麻豆| 免费日本视频一区| 国产精品系列在线播放| proumb性欧美在线观看| 色婷婷av久久久久久久| 日韩女优视频免费观看| 日本一区二区成人| 亚洲国产日韩a在线播放性色| 天堂资源在线中文精品| 久久99最新地址| 国产成人在线视频播放| 99re66热这里只有精品3直播| 精品视频色一区| 26uuu欧美| 一区二区在线观看免费视频播放| 污片在线观看一区二区| 国产高清亚洲一区| 91成人网在线| 久久久久国产精品麻豆| 亚洲制服丝袜av| 国产乱子伦一区二区三区国色天香| 国产成人av一区| 欧美日本一道本| 国产精品卡一卡二卡三| 亚洲一区二区三区中文字幕在线 | 秋霞影院一区二区| 成人国产在线观看| 日韩欧美电影在线| 国产午夜精品在线观看| 午夜国产精品一区| 国产91精品在线观看| 欧美一区二区三区免费大片| 亚洲精品免费一二三区| 国产一区二区视频在线| 3d动漫精品啪啪1区2区免费| 亚洲欧洲日韩在线| 国产黑丝在线一区二区三区| 91精品国产91久久久久久一区二区| 中文字幕日韩精品一区| 国产69精品久久久久毛片| 精品国产三级a在线观看| 无码av中文一区二区三区桃花岛| 99久久99久久精品国产片果冻 | 美女久久久精品| 欧美午夜电影一区| 亚洲欧美日韩在线| 成人精品高清在线| 欧美国产激情一区二区三区蜜月| 久久国产人妖系列| 欧美三级日韩在线| 亚洲一级二级三级| 日本韩国一区二区| 一区二区三区四区不卡视频 | 麻豆视频观看网址久久| 欧美日韩国产123区| 国产偷国产偷亚洲高清人白洁| 久久精品国内一区二区三区| 欧美日韩电影在线播放| 亚洲成在人线在线播放| 91麻豆视频网站| 又紧又大又爽精品一区二区| 日本高清无吗v一区| 一区二区久久久久久| 精品视频一区二区不卡| 亚洲一区二区三区四区在线免费观看 | 麻豆高清免费国产一区| 欧美一级欧美三级在线观看| 免费高清在线一区| 欧美日本韩国一区二区三区视频| 日韩三级高清在线| 成人精品在线视频观看| 亚洲大型综合色站| 国产午夜精品久久久久久久| 欧美色综合天天久久综合精品| 久久av资源站| 亚洲gay无套男同| 国产日韩欧美高清| 国产精品超碰97尤物18| 日韩成人精品在线| 日韩精品中午字幕| av一区二区不卡| 伦理电影国产精品| 天天综合网天天综合色| 亚洲影院久久精品| 色天天综合久久久久综合片| 美女网站一区二区| 亚洲永久精品国产| 国产精品乱人伦| 欧美大尺度电影在线| 在线观看视频一区二区| 国产suv精品一区二区6| 日韩和的一区二区| 一级中文字幕一区二区| 日本一区二区视频在线| 欧美一级二级三级蜜桃| 欧美伊人久久大香线蕉综合69 | 精品日韩在线一区| 欧美精品色一区二区三区| 色噜噜狠狠色综合欧洲selulu| 成人蜜臀av电影| 丁香五精品蜜臀久久久久99网站 | 国产精品美日韩| 欧美国产日韩亚洲一区| 国产日韩欧美a| 国产欧美综合在线观看第十页| 日韩欧美一区在线| 日韩欧美精品在线视频| 精品日韩99亚洲| 久久综合久久久久88| 亚洲精品一区二区三区香蕉| 一区二区三区免费| 亚洲视频网在线直播| 亚洲女人小视频在线观看| 亚洲精品成人a在线观看| 亚洲另类在线一区| 亚洲国产你懂的| 日本欧洲一区二区| 国产一区二区免费在线| 国产在线播放一区二区三区| 国产精品一区二区91| 高清不卡一区二区在线| 91老师片黄在线观看| 久久精品一区八戒影视| 国产精品美女久久久久久久| 国产精品女同一区二区三区| 亚洲欧美日韩国产成人精品影院| 亚洲综合一区在线| 日韩 欧美一区二区三区| 精品写真视频在线观看| 成人午夜av影视| 欧美色大人视频| 精品国内二区三区| 国产精品美女久久久久av爽李琼| 亚洲欧美日韩综合aⅴ视频| 午夜一区二区三区在线观看| 国产在线国偷精品产拍免费yy| 成人久久久精品乱码一区二区三区| 在线观看日产精品| 亚洲精品在线电影| 国产精品高潮久久久久无| 婷婷激情综合网| 丰满少妇在线播放bd日韩电影| 在线中文字幕一区| 久久免费国产精品| 亚洲一区二区三区小说| 国产成人精品免费视频网站| 在线欧美日韩国产| 久久精品视频免费| 亚洲高清视频的网址| 国产成人av一区二区三区在线| 欧美日韩成人综合在线一区二区| 国产欧美日产一区| 午夜精品久久久久影视| 国产成人免费9x9x人网站视频| 欧美影院精品一区| 国产精品免费视频观看| 美女国产一区二区| 色婷婷综合久久久久中文| 久久久久国产一区二区三区四区| 午夜精品一区二区三区免费视频 | 性感美女极品91精品| jvid福利写真一区二区三区| 日韩一级成人av|