欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡

你的位置:首頁 > EMC安規 > 正文

電子線路與電磁干擾/電磁兼容設計分析

發布時間:2008-10-05 來源:中國電磁兼容網

中心論題:

  • 簡要介紹EMC和EMI相關背景知識
  • 從理論上解釋電磁感應和EMI的產生
  • 以開關電源的電磁兼容設計為例說明EMI的解決方法

解決方案:

  • 利用PFC電路或差模濾波電感器控制電流諧波
  • 利用圖2所示的D1,R2,C6相應電路控制振鈴電壓
  • 利用減小電流回路面積和減少變壓器漏感控制傳導干擾信號
  • 合理設計電路或采取部分屏蔽措施控制輻射干擾信號
  • 降低冷地與大地間電壓消除高壓靜電|

一個好的電子產品,除了產品自身的功能以外,電路設計和電磁兼容性(EMC)設計的技術水平,對產品的質量和技術性能指標起到非常關鍵的作用。本文通過舉例對開關電源的電磁兼容設計,介紹了一般電子產品中電磁干擾的解決方法。

現代的電子產品,功能越來越強大,電子線路也越來越復雜,電磁干擾(EMI)和電磁兼容性問題變成了主要問題,電路設計對設計師的技術水平要求也越來越高。先進的計算機輔助設計(CAD)在電子線路設計方面很大程度地拓寬了電路設計師的工作能力,但對于電磁兼容設計的幫助卻很有限。

電磁兼容設計實際上就是針對電子產品中產生的電磁干擾進行優化設計,使之能成為符合各國或地區電磁兼容性標準的產品。EMC的定義是:在同一電磁環境中,設備能夠不因為其它設備的干擾影響正常工作,同時也不對其它設備產生影響工作的干擾。

電磁干擾一般都分為兩種,傳導干擾和輻射干擾。傳導干擾是指通過導電介質把一個電網絡上的信號耦合(干擾)到另一個電網絡。輻射干擾是指干擾源通過空間把其信號耦合(干擾)到另一個電網絡。因此對EMC問題的研究就是對干擾源、耦合途徑、敏感設備三者之間關系的研究。

美國聯邦通訊委員會在1990年、歐盟在1992提出了對商業數碼產品的有關規章,這些規章要求各個公司確保他們的產品符合嚴格的磁化系數和發射準則。符合這些規章的產品稱為具有電磁兼容性。

目前全球各地區基本都設置了EMC相應的市場準入認證,用以保護本地區的電磁環境和本土產品的競爭優勢。如:北美的FCC、NEBC認證、歐盟的CE認證、日本的VCCEI認證、澳洲的C-tick人證、臺灣地區的BSMI認證、中國的3C認證等都是進入這些市場的“通行證”。
 
電磁感應與電磁干擾
很多人從事電子線路設計的時候,都是從認識電子元器件開始,但從事電磁兼容設計實際上應從電磁場理論開始,即從電磁感應認識開始。

一般電子線路都是由電阻器、電容器、電感器、變壓器、有源器件和導線組成,當電路中有電壓存在的時候,在所有帶電的元器件周圍都會產生電場,當電路中有電流流過的時候,在所有載流體的周圍都存在磁場。

電容器是電場最集中的元件,流過電容器的電流是位移電流,這個位移電流是由于電容器的兩個極板帶電,并在兩個極板之間產生電場,通過電場感應,兩個極板會產生充放電,形成位移電流。實際上電容器回路中的電流并沒有真正流過電容器,而只是對電容器進行充放電。當電容器的兩個極板張開時,可以把兩個極板看成是一組電場輻射天線,此時在兩個極板之間的電路都會對極板之間的電場產生感應。在兩極板之間的電路不管是閉合回路,或者是開路,在與電場方向一致的導體中都會產生位移電流(當電場的方向不斷改變時),即電流一會兒向前跑,一會兒向后跑。

電場強度的定義是電位梯度,即兩點之間的電位差與距離之比。一根數米長的導線,當其流過數安培的電流時,其兩端電壓最多也只有零點幾伏,即幾十毫伏/米的電場強度,就可以在導體內產生數安培的電流,可見電場作用效力之大,其干擾能力之強。

電感器和變壓器是磁場最集中的元件,流過變壓器次級線圈的電流是感應電流,這個感應電流是因為變壓器初級線圈中有電流流過時,產生磁感應而產生的。在電感器和變壓器周邊的電路,都可看成是一個變壓器的感應線圈,當電感器和變壓器漏感產生的磁力線穿過某個電路時,此電路作為變壓器的“次級線圈”就會產生感應電流。兩個相鄰回路的電路,也同樣可以把其中的一個回路看成是變壓器的“初級線圈”,而另一個回路可以看成是變壓器的“次級線圈”,因此兩個相鄰回路同樣產生電磁感應,即互相產生干擾。

在電子線路中只要有電場或磁場存在,就會產生電磁干擾。在高速PCB及系統設計中,高頻信號線、集成電路的引腳、各類接插件等都可能成為具有天線特性的輻射干擾源,能發射電磁波并影響其它系統或本系統內其他子系統的正常工作。

開關電源EMC設計實例

目前大多數電子產品都選用開關電源供電,以節省能源和提高工作效率;同時越來越多的產品也都含有數字電路,以提供更多的應用功能。開關電源電路和數字電路中的時鐘電路是目前電子產品中最主要的電磁干擾源,它們是電磁兼容設計的主要內容。下面我們以一個開關電源的電磁兼容設計過程來進行分析。

                                                                                                      

 圖1 

                  
   
    圖2 

                                         
 圖1是一個普遍應用的反激式(或稱為回掃式)開關電源工作原理圖,50Hz或60Hz交流電網電壓首先經整流堆整流,并向儲能濾波電容器C5充電,然后向變壓器T1與開關管V1組成的負載回路供電。圖2是進行過電磁兼容設計后的電氣原理圖。

1.對電流諧波的抑制
一般電容器C5的容量很大,其兩端電壓紋波很小,大約只有輸入電壓的10%左右,而僅當輸入電壓Ui大于電容器C5兩端電壓的時候,整流二極管才導通,因此在輸入電壓的一個周期內,整流二極管的導通時間很短,即導通角很小。這樣整流電路中將出現脈沖尖峰電流,如圖3所示。
 

圖3

                                                                                                   
這種脈沖尖峰電流如用傅立葉級數展開,將被看成由非常多的高次諧波電流組成,這些諧波電流將會降低電源設備的使用效率,即功率因數很低,并會倒灌到電網,對電網產生污染,嚴重時還會引起電網頻率的波動,即交流電源閃爍。脈沖電流諧波和交流電源閃爍測試標準為:IEC61000-3-2及IEC61000-3-3。一般測試脈沖電流諧波的上限是40次諧波頻率。

解決整流電路中出現脈沖尖峰電流過大的方法是在整流電路中串聯一個功率因數校正(PFC)電路,或差模濾波電感器。PFC電路一般為一個并聯式升壓開關電源,其輸出電壓一般為直流400V,沒有經功率因數校正之前的電源設備,其功率因數一般只有0.4~0.6,經校正后最高可達到0.98。PFC電路雖然可以解決整流電路中出現脈沖尖峰電流過大的問題,但又會帶來新的高頻干擾問題,這同樣也要進行嚴格的EMC設計。用差模濾波電感器可以有效地抑制脈沖電流的峰值,從而降低電流諧波干擾,但不能提高功率因數。

圖2中的L1為差模濾波電感器,差模濾波電感器一般用矽鋼片材料制作,以提高電感量,為了防止大電流流過差模濾波電感器時產生磁飽和,一般差模濾波電感器的兩個組線圈都各自留有一個漏感磁回路。

L1差模濾波電感可根據試驗求得,也可以根據下式進行計算:

E=L*di/dt (1)

式中E為輸入電壓Ui與電容器C5兩端電壓的差值,即L1兩端的電壓降,L為電感量,di/dt為電流上升率。顯然,要求電流上升率越小,則要求電感量就越大。

2.對振鈴電壓的抑制
由于變壓器的初級有漏感,當電源開關管V1由飽和導通到截止關斷時會產生反電動勢,反電動勢又會對變壓器初級線圈的分布電容進行充放電,從而產生阻尼振蕩,即產生振鈴,如圖4所示。變壓器初級漏感產生反電動勢的電壓幅度一般都很高,其能量也很大,如不采取保護措施,反電動勢一般都會把電源開關管擊穿,同時反電動勢產生的阻尼振蕩還會產生很強的電磁輻射,不但對機器本身造成嚴重干擾,對機器周邊環境也會產生嚴重的電磁干擾。

                                                                                                           

                                                                                           圖4


圖2中的D1、R2、C6是抑制反電動勢和振鈴電壓幅度的有效電路,當變壓器初級漏感產生反電動勢時,反電動勢通過二極管D1對電容器C6進行充電,相當于電容器把反電動勢的能量吸收掉,從而降低了反電動勢和振鈴電壓的幅度。電容器C6充滿電后,又會通過R2放電,正確選擇RC放電的時間常數,使電容器在下次充電時的剩余電壓剛好等于方波電壓的幅度,此時電源的工作效率最高。

3.對傳導干擾信號的抑制
圖1中,當電源開關管V1導通或者關斷時,在電容器C5、變壓器T1的初級和電源開關管V1組成的電路中會產生脈動直流i1,如果把此電流回路看成是一個變壓器的“初級線圈”,由于電流i1的變化速率很高,它在“初級線圈”中產生的電磁感應,也會對周圍電路產生電磁感應,我們可以把周圍電路都看成是同一變壓器的多個“次級線圈”,同時變壓器T1的漏感也同樣對各個“次級線圈”產生感應作用,因此電流i1通過電磁感應,在每個“次級線圈”中都會產生的感應電流,我們分別把它們記為i2、i3、i4 •••。

其中i2和i3是差模干擾信號,它們可以通過兩根電源線傳導到電網的其它線路之中和干擾其它電子設備;i4是共模干擾信號,它是電流i1回路通過電磁感應其它電路與大地或機殼組成的回路產生的,并且其它電路與大地或機殼是通過電容耦合構成回路的,共模干擾信號可以通過電源線與大地傳導到電網其它線路之中和干擾其它電子設備。

與電源開關管V1的集電極相連的電路,也是產生共模干擾信號的主要原因,因為在整個開關電源電路中,數電源開關管V1集電極的電位最高,最高可達600V以上,其它電路的電位都比它低,因此電源開關管V1的集電極與其它電路(也包括電源輸入端的引線)之間存在很強的電場,在電場的作用下,電路會產生位移電流,這個位移電流基本屬于共模干擾信號。 

圖2中的電容器C1、C2和差模電感器L1對i1、i2和i3差模干擾信號有很強的抑制能力。由于C1、C2在電源線拔出時還會帶電,容易觸電傷人,所以在電源輸入的兩端要接一個放電電阻R1。

對共模干擾信號i4要進行完全抑制,一般很困難,特別是沒有金屬機殼屏蔽的情況下,因為在感應產生共模干擾信號的回路中,其中的一個“元器件”是線路板與大地之間的等效電容,此“元器件”的數值一般是不穩定的,進行設計時對指標要留有足夠的余量。圖2中L2和C3、C4是共模干擾信號抑制電路器件,在輸入功率較大的電路中,L2一般要用兩個,甚至三個,其中一個多為環形磁心電感。

根據上面分析,產生電磁干擾的原因主要是i1流過的主要回路,這個回路主要由電容器C5、變壓器T1初級和電源開關管V1組成,根據電磁感應原理,這個回路產生的感應電動勢為:

e=dψ/dt=S*dB/dt (2)

式中e為感應電動勢,ψ為磁通量,S電流回路的面積,B為磁感應密度,其值與電流強度成正比,dψ/dt為磁通變化率。由此可見,感應電動勢與電流回路的面積成正比。因此要減少電磁干擾,首先是要設法減小電流回路的面積,特別是i1電流流過的回路面積。另外,為了減少變壓器漏感對周圍電路產生電磁感應的影響,一方面要求變壓器的漏感要做得小,另一方面一定要在變壓器的外圍包一層薄銅皮,以構成一個低阻抗短路線圈,把漏感產生的感應能量通過渦流損耗掉。

4.對輻射干擾信號的抑制
電磁輻射干擾也是通過電磁感應的方式,由帶電體或電流回路及磁感應回路對外產生電磁輻射的。任何一根導體都可以看成是一根電磁感應天線,任何一個電流回路都可以看成是一個環形天線,電感線圈和變壓器漏感也是電磁感應輻射的重要器件。要想完全抑制電磁輻射是不可能的,但通過對電路進行合理設計,或者采取部分屏蔽措施,可以大大減輕電磁干擾的輻射。

例如,盡量縮短電路引線的長度和減小電流回路的面積,是減小電磁輻射的有效方法;正確使用儲能濾波電容,把儲能濾波電容盡量近地安裝在有源器件電源引線的兩端,每個有源器件獨立供電,或單獨用一個儲能濾波電容供電(充滿電的電容可以看成是一個獨立電源),防止各電路中的有源器件(放大器)通過電源線和地線產生串擾;把電源引線的地和信號源的地嚴格分開,或對信號引線采取雙線并行對中交叉的方法,讓干擾信號互相抵消,也是一種減小電磁輻射的有效方法;利用散熱片也可以對電磁干擾進行局部屏蔽,對信號引線還可以采取雙地線并行屏蔽的方法,讓信號線夾在兩條平行地線的中間,這相當于雙回路,干擾信號也會互相抵消,屏蔽效果非常顯著;機器或敏感器件采用金屬外殼是最好的屏蔽電磁干擾方法,但非金屬外殼也可以噴涂導電材料(如石墨)進行電磁干擾屏蔽。

5.對高壓的靜電消除
圖1中,如果輸出電壓高于1,000V,必須考慮靜電消除。雖然大多數的開關電源都采取變壓器進行“冷熱地”隔離,由于“熱地”,也叫“初級地”,通過電網可構成回路,當人體接觸到“初級地”的時候會“觸電”,所以人們都把“初級地”叫做“熱地”,表示不能觸摸的意思。而“冷地”也叫“次級地”,盡管電壓很高,但它與大地不構成回路,當人體接觸到“次級地”的時候不會“觸電”,因此,人們都把“次級地”叫做“冷地”,表示可以觸摸的意思。

但不管是"冷地"或者是"熱地",其對大地的電位差都不可能是零,即還是會帶電。如彩色電視機中的開關電源,"熱地"對大地的電位差大約有400VP-P(峰峰值),"冷地"對大地的電位差大約有1500VP-P(峰峰值)。

“熱地”帶電比較好理解,而"冷地"帶電一般人是難以理解的。那么"冷地"帶電這個電壓是怎樣產生的呢?這個電壓是由變壓器次級產生的,雖然變壓器次級的一端與“冷地”連接,但真正的零電位是在變壓器次級線圈的中心,或整流輸出濾波電容器介質的中間。這一點稱為電源的“浮地”,即它為零電位,但又不與大地相連。由此可知“冷地”帶電的電壓正好等于輸出電壓的一半,如電視機顯像管的高壓陽極需要大約3萬伏的高壓,真正的零電位是在高壓濾波電容(顯像管石墨層之間的電容)的中間,或高壓包的中間抽頭處,由此可以求出電視機中的冷地與地之間的電壓(靜電)大約為1,5000V。同理,“熱地”回路的“浮地”是在儲能濾波電容器C5的中間,所以“熱地”正常的帶電電壓為整流輸出的一半,約為200 VP(峰值),如把開關管導通或截止時產生的反電動勢也疊加在其之上,大約有400VP-P(峰峰值)。

圖2中的R3就是用來降低冷地與大地之間靜電電壓的,C8的作用是降低冷熱地之間的動態電阻。一般數字電路IC的耐壓都很低,如果“冷地”帶電的電壓很高,通過靜電感應,或人體觸摸,很容易就會把IC擊穿。

“冷地”帶電是屬于靜電的范疇,它只相當于對一個小電容充電,這個小電容的一端是大地,電容量相當于“冷地”對大地之間的等效電容。另外,圖2中的C1、C2、C3、C4、C8、R1、R8、T1屬于安全器件,使用時要注意安全要求。

EMC常用標準:
EMC通用系列標準:IEC61000-4-X

工業環境抗擾度通用標準:EN50082-2

脈沖電流諧波測試標準:IEC61000-3-2

|交流電源閃爍測試標準:IEC61000-3-3
 

特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡
国产午夜精品一区二区三区四区| 久久综合九色综合97_久久久| 欧美另类久久久品| 国产精品久久久一本精品| 国产成人精品三级| 久久久综合精品| 国产成人免费视频网站| 国产精品美女久久久久久久久| 国产精品亚洲а∨天堂免在线| 国产偷国产偷亚洲高清人白洁| 丁香天五香天堂综合| 欧美激情在线一区二区三区| 粉嫩aⅴ一区二区三区四区| 国产精品美女久久久久aⅴ国产馆 国产精品美女久久久久av爽李琼 国产精品美女久久久久高潮 | 欧美伊人久久大香线蕉综合69| 国产精品第五页| 91成人免费电影| 日韩 欧美一区二区三区| 2014亚洲片线观看视频免费| 成人伦理片在线| 首页亚洲欧美制服丝腿| 日本一区二区综合亚洲| 91国产免费观看| 国产老女人精品毛片久久| 亚洲欧美成人一区二区三区| 777奇米四色成人影色区| 成人午夜电影小说| 日本欧美大码aⅴ在线播放| 中文av字幕一区| 欧美一级精品在线| 成人99免费视频| 日本大胆欧美人术艺术动态| 中文字幕精品一区| 欧美一区二区美女| 在线观看日韩高清av| 国产精品一区二区在线看| 亚洲一区二区3| 国产精品丝袜在线| www成人在线观看| 6080yy午夜一二三区久久| 99久久伊人精品| 国产高清成人在线| 久久国产精品区| 日韩 欧美一区二区三区| 亚洲精品国产高清久久伦理二区| 久久九九久久九九| 欧美电影免费观看高清完整版在| 在线观看视频一区二区欧美日韩| 成人网在线播放| 激情另类小说区图片区视频区| 亚洲电影第三页| 亚洲影院久久精品| 亚洲视频香蕉人妖| 国产亚洲综合在线| 精品国产一区a| 精品国产电影一区二区| 精品久久人人做人人爽| 日韩一卡二卡三卡四卡| 欧美精品在线视频| 欧美高清视频一二三区| 欧美日韩dvd在线观看| 欧美日韩亚洲国产综合| 欧美日韩视频第一区| 欧美视频在线播放| 欧美美女喷水视频| 日韩欧美中文字幕公布| 欧美mv日韩mv国产网站app| 精品三级在线观看| 国产午夜亚洲精品理论片色戒 | 亚洲精品一区二区三区精华液| 欧美剧情电影在线观看完整版免费励志电影| av一本久道久久综合久久鬼色| 成人av资源网站| 91在线看国产| 欧美乱妇23p| 精品久久久久香蕉网| 国产日韩欧美精品一区| 国产精品国产精品国产专区不片| 国产精品久久久久三级| 亚洲欧洲在线观看av| 亚洲自拍偷拍欧美| 蜜桃一区二区三区四区| 懂色av一区二区在线播放| av综合在线播放| 欧美精品在线一区二区三区| 欧美videofree性高清杂交| 中日韩av电影| 婷婷综合五月天| 国产风韵犹存在线视精品| 色系网站成人免费| 欧美不卡在线视频| 亚洲色图视频网| 欧美aaaaaa午夜精品| 成人av网站在线观看| 欧美日韩和欧美的一区二区| 久久综合中文字幕| 亚洲一区二区三区精品在线| 国产一区二区三区蝌蚪| 在线国产电影不卡| 国产欧美一区二区三区沐欲| 午夜在线成人av| av在线不卡免费看| 精品国产免费人成电影在线观看四季 | 91丨九色丨尤物| 欧美一区二区三区在线观看| 国产精品福利一区| 麻豆精品视频在线| 在线精品国精品国产尤物884a| 亚洲精品一区二区三区四区高清| 亚洲精品日韩一| 高清视频一区二区| 欧美一级夜夜爽| 一区二区视频在线看| 六月婷婷色综合| 欧美日韩精品一区二区天天拍小说| 国产午夜精品理论片a级大结局| 亚州成人在线电影| 日本久久精品电影| 国产精品免费视频网站| 韩国精品一区二区| 日韩午夜av一区| 亚洲v中文字幕| 欧美中文字幕亚洲一区二区va在线 | 欧美午夜在线观看| 国产精品美女一区二区| 国产激情偷乱视频一区二区三区| 欧美夫妻性生活| 亚洲国产日韩一级| 色94色欧美sute亚洲13| 中文字幕一区二区三区四区不卡 | 色婷婷综合五月| 国产精品欧美经典| 99久久精品国产毛片| 中文字幕中文字幕中文字幕亚洲无线| 激情另类小说区图片区视频区| 欧美精品欧美精品系列| 午夜久久久久久久久| 欧美日韩色一区| 亚洲成人av一区二区三区| 色中色一区二区| 亚洲国产欧美在线| 欧美日韩国产影片| 老鸭窝一区二区久久精品| 制服丝袜在线91| 久久99国产精品麻豆| 久久久亚洲精品石原莉奈| 国产黄色91视频| 国产欧美日韩不卡| 色综合久久久网| 午夜精品一区二区三区电影天堂| 欧美亚洲另类激情小说| 青青草成人在线观看| 精品日韩欧美一区二区| 国产99久久久精品| 亚洲自拍偷拍网站| 日韩精品中文字幕一区二区三区| 国产一区二区三区香蕉| 国产精品福利电影一区二区三区四区| 91视频观看视频| 日日夜夜精品视频天天综合网| 日韩一区二区三区视频在线观看| 久久超碰97中文字幕| 亚洲国产电影在线观看| 欧美性大战久久| 九九在线精品视频| 亚洲图片另类小说| 欧美一区二区三区人| 成人av午夜电影| 免费在线成人网| 国产精品久久久久久久久搜平片 | 欧美性色黄大片手机版| 久久国产精品无码网站| 136国产福利精品导航| 精品视频999| 粉嫩13p一区二区三区| 亚洲国产一区二区视频| 欧美经典一区二区| 欧美日韩的一区二区| 国产成人精品综合在线观看| 亚洲午夜免费视频| 国产精品福利电影一区二区三区四区| 欧美美女一区二区三区| 99国产精品久久久久久久久久| 免费在线观看一区二区三区| 综合久久国产九一剧情麻豆| 2019国产精品| 欧美一区二区三区视频在线观看 | 在线综合+亚洲+欧美中文字幕| 丁香啪啪综合成人亚洲小说| 日韩福利视频网| 一区二区三区美女视频| 国产精品日韩成人| 久久综合九色综合久久久精品综合 | 国产精品自产自拍| 亚洲图片欧美综合| ●精品国产综合乱码久久久久| 国产日本亚洲高清| 精品国产123| 日韩美女视频在线| 日韩欧美一级二级三级久久久|