欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡

你的位置:首頁 > 互連技術 > 正文

第 4 代碳化硅技術:重新定義高功率應用的性能和耐久性

發布時間:2025-02-20 來源:Wolfspeed 責任編輯:lina

【導讀】本白皮書重點介紹 Wolfspeed 專為高功率電子應用而設計的第 代碳化硅 (SiC) MOSFET 技術。基于在碳化硅創新領域的傳承,Wolfspeed 定期推出尖端技術解決方案,重新定義行業基準。在第 代發布之前,第 代碳化硅 MOSFET 憑借多項重要設計要素的平衡,已在廣泛用例中得到驗證,為硬開關應用的全面性能設定了基準。


簡介

 

本白皮書重點介紹 Wolfspeed 專為高功率電子應用而設計的第 4 代碳化硅 (SiC) MOSFET 技術。基于在碳化硅創新領域的傳承,Wolfspeed 定期推出尖端技術解決方案,重新定義行業基準。在第 4 代發布之前,第 3 代碳化硅 MOSFET 憑借多項重要設計要素的平衡,已在廣泛用例中得到驗證,為硬開關應用的全面性能設定了基準。

 

市場上的某些廠商只關注特定品質因數 (FOM),如導通損耗、室溫下的 RDS(on) 或 RDS(on) × Qg,而 Wolfspeed 則采用了一種更為廣泛且綜合的方法。通過同時優化導通損耗、開關性能、穩定性和可靠性,Wolfspeed 的設計理念可確保全方位的性能。第 4 代 MOSFET 延續了 這一設計理念,全面提升了各項指標,在保持 Wolfspeed 引以為傲的堅固耐用的同時,簡化了系統設計,提高了易用性。

 

第 4 代 MOSFET 主要面向高功率汽車、工業和可再生能源系統,為碳化硅技術帶來了新的范式。此類器件為產品開發的長期路線圖提供了靈活的基礎,包括應用優化的裸芯片、模塊和分立式產品等。基于第 4 代技術的每項設計都關注三個性能向量:整體系統效率;卓越的耐久性;較低系統成本。所有這些特性都旨在助力設計人員實現前所未有的性能和價值。

 

性能效率提升

 

導通損耗的重要性

 

盡可能減少導通損耗,對于電動汽車 (EV) 中的牽引逆變器、工業電機驅動器以及人工智能 (AI) 服務器電源等關鍵應用至關重要。這些系統在寬負載范圍內運行,通常會在低功率水平下運行較長時間。減少導通損耗可提高整個負載范圍內的效率,從而延長電動汽車的續航里程,提高 HVAC 系統的能效評級,節約服務器集群的冷卻成本(因為減少了散熱需求)。

 

此外,較低的導通損耗還可優化半導體材料的使用,提高給定應用的功率水平或降低其材料成本,同時實現效率和成本的雙重效益。

 

硬開關應用

 

在硬開關應用(如工業電機驅動器、AI 數據中心電源以及并網系統的有源前端 (AFE) 轉換器)中,減少開關損耗至關重要。

 

此類應用在不同負載下運行。它們有時會在短時間內以非常高的功率運行,但在使用壽命的大部分時間里都處于較低的功率水平。從效率視角來看,最大限度減少導通損耗有助于提高整個負載范圍內的效率。例如,在電動汽車中,這意味著同樣的電池可實現更長的行駛里程或續航時間。

 

減少開關損耗有兩大優勢。首先,客戶可以提高開關頻率,從而實現更小、更輕、更具成本效益的磁性元件和電容器。其次,客戶還可通過減少散熱來優先提升效率,并通過使用更小的散熱器或更低的冷卻需求來降低系統級成本。以上優勢并不相互排斥,客戶可以根據其特定需求靈活地優化設計。

 

*閱讀應用說明,進一步了解如何測量開關和導通損耗

 

在圖 1 所示的 3 級直流快速充電機中,AFE 將轉換器連接到電網。它將電網電壓轉換為穩定的直流鏈路電壓,用于給電池充電。與體積更大、效率較低的 IGBT 相比,碳化硅分立器件和功率模塊可減少損耗并提高效率,因為它們能夠在更高的頻率和溫度下工作,同時減少了散熱需求。


1.jpg 

圖1:3 級直流快速充電機的簡圖

 

第 3 代 MOSFET 與第 4 代 MOSFET 性能對比

 

在所有電力電子應用中,無論是硬開關還是軟開關,最大限度減少導通損耗都很重要。導通損耗主要取決于功率 MOSFET 的導通電阻(RDS(on)),而該導通電阻則與應用所需的電流水平和由此產生的結溫有關。在滿額定負載電流下,MOSFET 的工作溫度通常接近其最高額定工作溫度(或因設計裕度而略低)。MOSFET 的型號選擇和最終的系統半導體 BOM 成本由該高溫 RDS(on) 決定。Wolfspeed 第 4 代 MOSFET 在高溫下的導通電阻可降低高達 21%,而在較低溫度下,該電阻降低幅度更大。在電流水平和結溫較低的輕負載下,RDS(on) 隨溫度的降低直接提高了系統效率,并延長了工作壽命。

 

為了說明第 4 代 MOSFET 在開關損耗和易用性方面的改進,應考慮半橋開關事件的波形。在第 3 代器件所具有的出色性能和可靠性基礎上,Wolfspeed 第 4 代 MOSFET 通過改進提高了開關速度并減少了電壓過沖,這得益于體二極管性能的提升和設計的優化。第 4 代器件的這些改進建立在第 3 代的強大基礎之上,確保了在產品組合過渡期間,即便是在要求嚴苛的應用中,也能保持一貫的卓越表現。

 

圖 2 和圖 3 顯示了 1200 V 第 4 代器件與第 3 代等效器件在動態開關性能方面的對比。調整柵極電阻值,以便在導通期間提供匹配的 di/dt,在關斷期間提供匹配的 dv/dt。第 4 代器件能夠實現更快的開關速度,這里僅展示了一種比較器件性能的保守方法。

 

在導通過程中,另一個 MOSFET 的體二極管會換向關斷,導致反向恢復電流通過體二極管流入正在導通的 MOSFET。改進的第 4 代體二極管行為在導通電流波形中表現得非常明顯,其電流恢復速度更快,從而顯著降低了開通損耗。此外,第 4 代器件的軟體二極管性能導致開關動作時的振鈴減少,可降低系統噪聲并提高 EMI 性能。兩代器件的關斷表現相似,可實現低損耗和低 EMI。

 

第 4 代碳化硅技術:重新定義高功率應用的性能和耐久性 

圖2:第 3 代和第 4 代 MOSFET 的導通波形對比

 

第 4 代碳化硅技術:重新定義高功率應用的性能和耐久性 

圖3:第 3 代和第 4 代 MOSFET 的關斷波形對比

 

改進的體二極管性能以及由此提升的開通性能可大幅降低第 4 代器件的開關損耗。在許多情況下,開關損耗的降低幅度甚至更大,因為第 4 代器件可在更高的 di/dt 水平下工作,同時在反向恢復過程中不會超出 VDS 安全工作區。

 

在相同條件下工作時,第 4 代器件的反向恢復過程更為平緩,從而降低了 di/dt 并顯著減少了電壓過沖(約 900 V,降幅達 75%)。

 

這種改進使得器件在 1,200 V 的額定電壓下擁有 300 V 的裕量,從而提高了安全系數和穩健性。客戶可通過現有封裝實現更快的開關速度,或者通過高級封裝解決方案(如 Wolfspeed 的定制功率模塊)來獲得更高性能。

 

圖 4 顯示了 Wolfspeed 第 3 代 21 mΩ MOSFET 與第 4 代 25 mΩ 器件之間的損耗。當匹配開通 di/dt 和關斷 dV/dt 時,在額定電流下可實現 27% 的 ESW 降低。某些第 4 代 MOSFET 可通過采用更低的 Rg 值來進一步改善開關損耗。

 

第 4 代碳化硅技術:重新定義高功率應用的性能和耐久性 

 圖 4:第 3 代和第 4 代的開關損耗對比

 

第 4 代技術提高了硬開關應用的性能,使得 EON 和 EOFF 的降幅高達 15%,同時也減少了軟開關和硬開關應用中的導通損耗,使工作溫度下的 RSP 降低高達 21%(在 175 °C 下的 RDS(on) 表現優異)。

 

減少 EMI 設計挑戰

 

從圖 2 的對比中可以看出,第 4 代 MOSFET 的另一個優勢在于減少了反向恢復后的振蕩和振鈴。與第 3 代相比,第 4 代 MOSFET 的波形更為平滑,最大限度地減少了共模電壓和輻射發射,簡化了電磁干擾 (EMI) 濾波器設計。

 

* 進一步了解實現 EMI 合規性的設計捷徑

 

降低波形噪聲可簡化需要高速開關的系統的開發,同時應對 EMI 挑戰。對于從第 3 代向上升級的客戶,第 4 代提供了一條便捷的升級路徑,在波形行為和系統設計靈活性方面都有顯著提升。

 

專為應對嚴苛的環境而設計

 

宇宙射線可靠性

 

高海拔應用(如在山區行駛的電動汽車或飛機)會面臨由宇宙射線引發的單粒子燒毀風險。這些事件由中子通量(每單位時間撞擊半導體的中子數)引起,可產生漏源電流 (IDS),進而可能引發不良后果。

 

第 4 代 MOSFET 采用增強的抗擾度設計,與前幾代相比,宇宙射線失效率 (FIT) 可降低 100 倍。這種可靠性提升減少了對過度電壓降額的需求,使得系統設計更加高效。此外,它們還能夠承受過載和過應力事件。Wolfspeed 芯片產品組合經過認證,可在 185 °C 下持續運行,并能在 200 °C 下進行有限壽命的運行。

 

短路耐受時間

 

短路耐受時間是電機驅動器和牽引系統的關鍵參數,可確保在發生故障時安全關閉。第 4 代技術支持高達 2.3 微秒的耐受時間,可與現有的柵極驅動器技術兼容,且不會影響 RDS(on) 性能。第 4 代 MOSFET 兼具穩健性和效率,是要求嚴苛應用之理想選擇。

 

這些特性擴展了安全工作區 (SOA),可確保穩健的性能。設計人員在設計時能減少半導體使用,從而降低成本,同時不影響安全性。

 

高頻率軟開關應用

 

軟開關應用(如用于車載充電機和工業電源第二階段的超高頻 DC-DC 轉換器)的設計與硬開關前端有所不同。開關損耗在此類應用中被最大限度地減少甚至消除,因此導通損耗成為主要的剩余損耗。通常,前端有一個硬開關的有源功率因數校正 (PFC) 階段,之后是一個軟開關的 DC-DC 轉換器階段。

 

該轉換器階段通常采用 LLC、CLLC、移相全橋或雙有源橋等拓撲結構。在此類設計中,開關損耗不太重要,盡管組件仍需承受高 di/dt 和 dv/dt 應力,并處理高諧振電路電流。

 

軟開關應用的主要優勢在于減少因 RSP 改進而降低的導通損耗。這種導通損耗的降低適用于整個負載曲線,對于有能效要求(如能源之星 Energy Star 標準)的應用尤其有益。其中許多電源必須符合要求在不同負載水平下實現高效率的法規,例如,滿足服務器電源的 80 Plus 鈦金級能效水平。

 

系統成本和開發時間優勢

 

Wolfspeed 的第 4 代碳化硅 MOSFET 在降低系統成本和加快開發時間方面具有顯著優勢。通過提升導通和開關頻率,這些器件使工程師能夠設計出具有更小、更輕、更便宜組件的系統,如散熱器、EMI 濾波器和磁性元件。

 

得益于出色的 RSP 性能,在相同面積內可實現高達 30% 的功率輸出,從而在不增加額外空間的情況下提升功率密度。

 

增強的穩健性和可靠性,包括降低對宇宙射線等環境因素的敏感性,使設計人員能夠使用更小的安全裕度,從而進一步最大程度減少所需的半導體材料。此外,第 4 代 MOSFET 的即插即用式兼容性讓現有用戶能夠輕松升級,減少了重新設計的工作量。

 

如圖 5 所示,第 4 代器件的體二極管軟度因子提高了 3.5 倍:MOSFET 在反向恢復場景中可有效將 EMI 降至最低,實現了更平穩的運行,而無需對 QRR 權衡取舍。即使在高 dv/dt 下,開關操作也能既安全又簡潔,這得益于高達 600:1 的電容比,它消除了寄生過沖的風險,并確保了在苛刻條件下的可靠系統性能。所有這些改進相結合,使開發人員能夠在更短的設計時間內實現優化的系統性能,同時滿足嚴格的效率和可靠性要求。

 

 第 4 代碳化硅技術:重新定義高功率應用的性能和耐久性

圖5:體二極管反向恢復瞬態的技術對比

 

優化功率封裝以充分發揮第 4 代技術的優勢

 

Wolfspeed 始終關注客戶需求,致力于通過封裝策略實現系統耐久性、效率和功率密度。先進的封裝進一步提升了第 4 代技術的優勢,增強了熱管理,并確保了器件在功率和溫度循環等嚴苛條件下的耐久性。

 

可顯著提升效率和功率密度的先進封裝

 

碳化硅器件以其高開關速度和熱性能突破了傳統硅基功率封裝的極限。傳統設計通常受到寄生電感的影響,從而導致電壓過沖、振蕩和柵極氧化層損壞。這些問題不僅會影響效率,還需要高成本的設計權衡。

 

專為碳化硅量身定制的先進封裝技術可最大限度地減少功率、柵極和共源回路中的寄生電感,從而提高效率,降低開關損耗,并支持使用額定值更低的碳化硅器件。雙面冷卻和緊湊布局等功能支持高功率應用、熱控制和更高的開關頻率,從而充分發揮碳化硅在可靠且節能系統中的潛力。

 

最大限度地減少功率模塊中的電感可以減少電壓振蕩,實現簡潔的開關操作和更高的效率。內部母線和夾子附件等創新技術將電感降低至 5 納亨的水平,進一步降低了開關損耗并提升了系統穩定性。

 

可提高系統可靠性和耐久性的先進封裝

 

創新的互連方法對于提升功率模塊性能至關重要。傳統的引線鍵合封裝技術被頂部夾式互連等先進技術所取代,新技術可降低電阻、改進熱管理并增強機械可靠性。銅夾直接焊接或燒結到芯片上,可改善功率流和連接強度。

 

銀燒結是一種最先進的芯片粘接技術,可在芯片和氮化硅等基板之間形成牢固的連接,確保出色的導熱性和機械耐久性。這種方法越來越多地用于需要高功率和熱循環性能的應用中。

 

隨著功率密度的增加,有效的熱管理至關重要。直接冷卻解決方案,如翅片浸沒在冷卻劑中的 pin-fin 設計(見圖 4),可有效幫助芯片散熱。這些方法使碳化硅器件能夠在高溫下保持高性能,尤其是在汽車系統中。

 

*進一步了解壓接式引腳的系統設計優勢

 

可靠性對汽車功率模塊至關重要,這些模塊必須滿足 AEC-Q101 和 AQG324 等嚴格標準。先進的材料和工藝可解決水分滲透和引線鍵合退化等故障機制。例如,環氧樹脂模塑化合物正在取代凝膠基封裝材料,提供優異的防潮性和結構完整性。增強型壓接式引腳技術支持更高的 PCB 連接電流容量,適用于緊湊型和高功率設計。


 第 4 代碳化硅技術:重新定義高功率應用的性能和耐久性

圖 6:Wolfspeed 的 YM 和 XM 模塊平臺采用 pin-fin 封裝技術

 

關鍵要點和結論

 

新推出的第 4 代碳化硅技術在導通損耗、開關性能和耐久性取得了平衡,標志著電力電子領域向前邁出了重要一步。與其他專注于室溫下的 RDS(on) 等有限指標的廠商不同,Wolfspeed 優先考慮在實際工作條件下實現最大的電路內價值。新平臺將為系統優化功率模塊、分立器件和裸芯片產品的長期發展奠定基礎,并將惠及電動汽車、工業電機驅動器、AI 服務器電源、可再生能源系統和航空電子設備等行業。

 

在電動汽車中,較低的導通損耗可延長電池續航里程,而在工業電機驅動器中,更高的效率可降低能源消耗和冷卻成本。

 

在電機驅動器和電網電源轉換器等硬開關應用中,改進的開關特性提升了開關頻率或效率,從而減小了系統尺寸和成本。較低的開關損耗也簡化了熱管理,且支持緊湊設計。增強的反向恢復降低了 EMI,簡化了濾波器設計和一致性測試,同時還可應對宇宙射線引起的單粒子燒毀等可靠性挑戰。

 

第 4 代 MOSFET 具有 2 微秒的短路耐受時間,可確保故障期間的安全運行,并與現有柵極驅動器技術兼容。在高頻率 DC-DC 轉換器等軟開關應用中,減少導通損耗可提高符合 80 Plus 鈦金級標準的系統(如 AI 服務器電源)的效率。可再生能源系統受益于更高的效率和靈活的熱管理,可減少維護工作并增強可靠性。

 

航空電子設備和 eVTOL 飛機等新興應用十分依賴 MOSFET 的緊湊性、效率和強大的可靠性。第 4 代器件專為靈活集成而設計,設計人員能夠根據不同的市場需求優化性能或可靠性,同時確保出色的結果。

 

從設計之初,第 4 代就定位于先進的 200 mm技術。Wolfspeed 建立了全球首個也是規模最大的 200 mm 碳化硅制造工廠。憑借技術先進的晶圓制造工廠,Wolfspeed 站在全行業從硅基向碳化硅基半導體轉型的前沿,有望顯著提升下一代技術的能效和性能。

(來源:Wolfspeed)


免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


我愛方案網


推薦閱讀:

通過單芯片 60GHz 毫米波雷達傳感器,降低車內傳感的復雜性和成本

Qorvo BMS創新解決方案助力精準SOC和SOH監測,應對鋰離子電池挑戰

射頻功率收集電路

意法半導體面向可穿戴設備的無線充電解決方案

利用解決方案供應商的優勢加速自主移動機器人開發


特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索

關閉

?

關閉

欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡
6080日韩午夜伦伦午夜伦| 国产99精品在线观看| 午夜电影一区二区三区| 日韩写真欧美这视频| 久久综合色婷婷| 亚洲色大成网站www久久九九| 国产精品香蕉一区二区三区| 蜜臀久久99精品久久久久宅男 | 久久欧美一区二区| 久久久久九九视频| 一级特黄大欧美久久久| 国产自产v一区二区三区c| 成人夜色视频网站在线观看| 91在线观看地址| 日韩欧美一级二级三级久久久| 91黄视频在线| 精品久久久久一区二区国产| 青青草国产成人av片免费| 一区二区三区在线视频观看58| 国产精品青草综合久久久久99| 欧美成人激情免费网| 亚洲欧洲精品一区二区三区 | 欧美日韩精品免费观看视频 | 久久久精品免费网站| 日韩亚洲欧美综合| 久久久久久久久久久久久女国产乱| 欧美一卡二卡在线| 亚洲人xxxx| 日本欧美一区二区| 免费高清不卡av| 91麻豆国产香蕉久久精品| 久久午夜电影网| 国产亚洲一区二区在线观看| 成人激情免费视频| 日韩一区二区三区视频在线观看| 精品视频1区2区| 99精品视频在线免费观看| 欧美一级黄色大片| 一区二区三区久久久| 国产91对白在线观看九色| 91在线小视频| 99久久777色| 国产欧美综合在线| 麻豆成人av在线| 国产成人福利片| 久久综合狠狠综合久久激情| 综合久久给合久久狠狠狠97色| 亚洲视频在线观看三级| 久久成人免费网| 欧美精品欧美精品系列| 亚洲自拍欧美精品| 亚洲18女电影在线观看| 日本精品一级二级| 久久精品亚洲精品国产欧美| 日本不卡视频在线| 精品国内片67194| 偷偷要91色婷婷| 国产成人av影院| 欧洲视频一区二区| 亚洲欧美日韩国产综合在线| 欧美性猛交xxxx黑人交| 日韩不卡一二三区| 国产情人综合久久777777| 91浏览器打开| 蜜桃av噜噜一区| 亚洲老司机在线| 日韩一级二级三级精品视频| 国产91露脸合集magnet| 亚洲国产精品久久久久婷婷884| 91丨九色porny丨蝌蚪| 日韩国产精品久久久久久亚洲| 欧美视频日韩视频在线观看| 免费人成黄页网站在线一区二区| 欧美午夜不卡视频| 亚洲高清免费在线| 国产日韩精品一区| 91精品国产综合久久福利软件| 午夜亚洲国产au精品一区二区| 91蝌蚪porny| 国内不卡的二区三区中文字幕| 日韩欧美在线网站| 麻豆免费看一区二区三区| 91精品国产综合久久久久久| www.亚洲色图.com| 狠狠色狠狠色综合日日91app| 欧美成人a视频| 欧美日韩中字一区| 成人av在线观| 国产精品91一区二区| 免费成人在线播放| 亚洲综合偷拍欧美一区色| 91在线国产观看| 国产精品一区二区果冻传媒| 天堂精品中文字幕在线| 亚洲自拍另类综合| 日韩免费高清电影| 777精品伊人久久久久大香线蕉| 欧美aaa在线| 天天亚洲美女在线视频| 欧美一级黄色片| 国产一区二区女| 中文字幕色av一区二区三区| 久久亚洲春色中文字幕久久久| 国产精品一卡二| 久久99精品国产麻豆婷婷洗澡| 欧美精品一区二区蜜臀亚洲| 欧美一区2区视频在线观看| 欧美三级在线视频| 欧美主播一区二区三区| 在线视频你懂得一区二区三区| 视频在线观看一区二区三区| 亚洲精品国久久99热| 日韩美女视频一区二区在线观看| 成人永久免费视频| 午夜精品久久久久久久99水蜜桃| 欧美成人女星排行榜| 精品欧美一区二区久久| 精品久久久三级丝袜| 精品盗摄一区二区三区| 一本一道久久a久久精品综合蜜臀| 视频一区中文字幕| 美女一区二区在线观看| 久久97超碰国产精品超碰| 国产一级精品在线| 99精品一区二区| 欧美日韩一区二区三区在线看 | 成人av电影在线播放| 高清不卡在线观看| 99免费精品视频| 在线观看网站黄不卡| 91精品国产色综合久久 | 三级欧美在线一区| 亚洲婷婷在线视频| 亚洲国产精品影院| 综合久久一区二区三区| 亚洲成人免费看| 美国三级日本三级久久99| 亚洲免费伊人电影| 午夜婷婷国产麻豆精品| 国产精品一区在线| 欧美性xxxxxx少妇| 久久奇米777| 欧美va亚洲va国产综合| 国产精品天美传媒沈樵| 亚洲第一会所有码转帖| 国产乱人伦精品一区二区在线观看| 日韩国产在线观看| 成人高清在线视频| 欧美一区二区三区日韩| 中文字幕免费不卡在线| 亚洲成人综合网站| 国产精品 欧美精品| 欧美日韩免费高清一区色橹橹| 色综合天天性综合| 日韩欧美国产不卡| 欧美精品视频www在线观看| 国产亚洲综合av| 日韩经典中文字幕一区| 91麻豆.com| 久久久av毛片精品| 婷婷国产v国产偷v亚洲高清| 亚洲在线视频一区| 成人免费va视频| 日韩一区二区麻豆国产| 一区二区三区不卡在线观看| 亚洲精品国产一区二区三区四区在线| 国产精品看片你懂得| 青青草国产成人av片免费 | 26uuu国产一区二区三区| 亚洲一区二区三区四区中文字幕| 亚洲综合一二区| 三级亚洲高清视频| 91黄色免费版| 亚洲色图视频网| 成人黄动漫网站免费app| 精品精品国产高清a毛片牛牛| 国产网站一区二区三区| 美国欧美日韩国产在线播放| 91成人免费在线| 国产精品国产三级国产a| 国产一区二区三区黄视频| 日韩欧美不卡一区| 日韩影院免费视频| 欧美日韩视频在线观看一区二区三区 | 国产一区二区三区香蕉 | 欧美不卡视频一区| 亚洲成人免费在线观看| 在线精品观看国产| 亚洲精品国久久99热| 蜜臀91精品一区二区三区| 国产乱国产乱300精品| 欧美精品一区二区精品网| 国产精品国产馆在线真实露脸| 亚洲愉拍自拍另类高清精品| 七七婷婷婷婷精品国产| 日韩一区二区三区电影在线观看 | 欧美mv日韩mv| 久久99国产精品久久| 精品毛片乱码1区2区3区| 国内精品免费**视频|