欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡

你的位置:首頁 > 互連技術 > 正文

功率MOSFET的UIS(UIL)特性知多少?

發布時間:2024-03-12 責任編輯:lina

【導讀】在關斷狀態下,功率MOSFET的體二極管結構的設計是為了阻斷最小漏極-源極電壓值。MOSFET體二極管的擊穿或雪崩表明反向偏置體二極管兩端的電場使得漏極和源極端子之間有大量電流流動。典型的阻斷狀態漏電流在幾十皮安到幾百納安的數量級。之前我們討論過功率MOSFET的雪崩效應,今天,我們將繼續分享相關UIS (UIL)數據表的額定值。


在關斷狀態下,功率MOSFET的體二極管結構的設計是為了阻斷最小漏極-源極電壓值。MOSFET體二極管的擊穿或雪崩表明反向偏置體二極管兩端的電場使得漏極和源極端子之間有大量電流流動。典型的阻斷狀態漏電流在幾十皮安到幾百納安的數量級。之前我們討論過功率MOSFET的雪崩效應,今天,我們將繼續分享相關UIS (UIL)數據表的額定值。


除了Ipk vs tav圖之外,大多數功率MOSFET數據表還包含一個UIS能量額定值,通常列在最大值表中。這有點誤導,因為很明顯 (E=0.5Vav*Ipk*tav) 功率 MOSFET 理論上可以具有無限大的能量額定值,如果用無限小的電感器(tav接近零)和無限大的電感(tav接近無窮大)進行測量的話。功率 MOSFET 的 UIS 雪崩脈沖中消耗的能量隨著tav的增加而增加。(見圖8)。對于某些給定的 Tj(initial) 值,任何單個UIS雪崩額定值都可以作為位于Ipk vs tav SOA曲線上的任何Ipk、tav工作點。


選擇一個工作點而不是另一個工作點作為數據表“最大”額定值的一些原因包括:選擇工作點作為在生產線末端測試時用于篩選器件的相同工作點,或者出于營銷或客戶目的以指示某些所需的能量水平。將一個器件的UIS能力與另一個器件進行比較時,關鍵點是比較相同Tj(initial)溫度下的Ipk vs tav繪圖數據,而不是比較單個UIS額定值。


功率MOSFET的UIS(UIL)特性知多少?

圖 8.圖7中的數據轉換為雪崩中隨時間變化的能量的數據。UIS能量隨著tav的增加而增加。


幾個設計和相關的晶圓加工屬性被用來影響功率MOSFET UIS能力。其中最主要的是源極金屬觸點的設計和處理,但是討論這些屬性并不是理解任何功率MOSFET設計的主要目標的必要條件,關于UIS功能,關鍵是是確保器件熱失效。也就是說,由于雪崩操作而在器件中耗散的能量僅受器件針對該特定功率函數的熱能力的限制。具有相似BV特性(即相同或相似的雪崩電壓)和相似熱性能的MOSFET器件將具有相似的UIS能力。 由于實際應用中典型的UIS雪崩時間(并列在數據表圖上)通常小于一毫秒,因此熱流不會明顯受到外部熱邊界條件的影響;主要的熱約束是 MOSFET 裸芯的有源面積和厚度。因此,在MOSFET技術和類似技術內,作為tav函數的Ipk (fail)能力預計應該與裸芯有源面積成比例。事實證明這是正確的,見圖9。


圖9的y軸標記為Jpk(fail),單位A/mm2,這是單個MOSFET樣品的Ipk(fail)值除以器件有源面積得到的值。這使得可以將來自不同 MOSFET 樣品的Ipk(fail) vs tav數據包括在內,這些樣品具有不同的裸芯有源面積(在本例中為約 1mm2到13mm2)。此外,圖9顯示了三種截然不同的60V MOSFET技術的數據,每種技術都具有相似的雪崩電壓特性。從該數據中可以清楚地看出,這些具有相似雪崩電壓特性的不同MOSFET技術表現出相同的UIS能力,與裸芯有源面積(或更準確地說,有源裸芯體積)成比例。圖10顯示了Jpk(fail)數據作為雪崩時間的函數,用于表示三個不同BV額定值的三組不同數據。圖10說明,與較高BV器件相比,較低BV額定值(較低Vav)器件在雪崩中的給定時間具有更高的Jpk能力。然而,如果圖10中的數據根據能量(失效)密度(以J/mm2為單位)繪制,則無論技術和BV額定值如何,能量密度大致遵循相同的函數,這進一步證明MOSFET UIS能力與裸芯有源體積成比例(見圖11)。


功率MOSFET的UIS(UIL)特性知多少?

圖9.三種不同額定60V MOSFET技術的失效時峰值雪崩電流密度作為tav數據的函數


功率MOSFET的UIS(UIL)特性知多少?

圖10.三種不同BV額定值下多種MOSFET技術的失效時峰值雪崩電流密度與tav數據的關系


功率MOSFET的UIS(UIL)特性知多少?

圖11.失效時的能量密度與根據圖10數據計算的tav數據。此能量密度函數對于任何額定值的BV產品都大致相同。


MOSFET UIS能力在任何情況下僅受MOSFET器件熱能力限制,但有一個例外。在較高的雪崩電流密度下,MOSFET器件可能會在遠低于熱基Jpk(fail)預期值的情況下發生失效。也就是說,數據表上的Ipk vs tav圖不能無限外推到更高的Ipk和更低的tav值。


其原因如圖12所示。MOSFET結構的p摻雜區、n摻雜源極區和n摻雜漂移 (epi) 區形成一個npn晶體管。此npn晶體管的基極到發射極結由p摻雜區域和n摻雜源極區域形成,被前端金屬短接。因此,源極金屬觸點是MOSFET UIS能力的關鍵設計和工藝參數。如果npn被激活,因為基極到發射極是正向偏置的,大量的雪崩電流將聚集在缺陷位置,導致器件快速失效。關鍵是要認識到p摻雜區域具有一定的電阻水平,因此在某些雪崩電流密度下,p-n結將正向偏置,從而激活npn晶體管。


圖13顯示了與較長雪崩時間相比,較低雪崩時間的 Jpk(fail) 數據,其中器件Jpk的失效顯然是與固有的熱性能有關。因此,任何功率MOSFET都必須對峰值雪崩電流有一個最大限制。即使數據表沒有列出或顯示最大UIS Ipk值也是如此。在應用設計中,如果需要從非常高幅值的短路電流中斷開,雪崩過程中的最大Ipk限制可能會成為一個問題。由于PCB或電源線布線中的小雜散電感,即使雪崩能量遠低于固有熱失效所需的能量,MOSFET也可能在關斷時發生雪崩失效。


功率MOSFET的UIS(UIL)特性知多少?

圖12.顯示內部npn BJT結構的屏蔽柵極MOSFET結構的簡化橫截面圖。虛線箭頭代表雪崩電流。


功率MOSFET的UIS(UIL)特性知多少?

圖13.額定電壓為40V的產品的峰值雪崩電流密度與tav的關系,顯示了在低雪崩時間和高峰值電流密度下的非熱失效


功率MOSFET可以在雪崩中重復運行,前提是每次雪崩事件都在安全工作限制范圍(Ipk、tav、Tj(initial))內。也就是說,基于溝槽的MOSFET技術由于類似于熱載流子注入的效應而導致重復的雪崩操作,可能會表現出直流參數偏移。圖14說明了這一點;在雪崩期間,處于高電場下的漂移 (n?epi) 區域可能存在高電流密度(漂移或臺面區域完全耗盡)。在溝槽結構中,柵極和屏蔽氧化物與高電流雪崩電流相鄰,高電場可以將電荷載流子撞擊到柵極和屏蔽氧化物中,具體取決于操作條件。平面技術結構在雪崩操作期間并非如此。通常,平面MOSFET結構不受重復雪崩HCI效應的影響。


受重復雪崩HCI效應影響的MOSFET直流參數包括BVdss(雪崩電壓)、Idss(斷態漏極-源極漏電流)、Vth(柵極-源極閾值電壓)和Rds(on)(通態漏極-源極阻抗)。Igss(斷態柵極-源極漏電流)不受重復雪崩操作的影響。通常,BVdss參數偏移會發生并在最初的幾百到幾千個重復雪崩循環中穩定下來,但增量幅度通常小于±3V,這在大多數情況下不會出現應用問題。在數百萬至數億次重復雪崩循環后,Idss會顯著增加(從納安范圍到個位微安范圍)。


通道中的遷移率會受到重復雪崩HCI效應的影響,導致Rds(on) 增加,同時Vth降低,同樣是在超過數百萬到數億個重復雪崩循環后出現。這些參數是否顯著變化以及變化幅度取決于重復雪崩操作條件(平均和峰值結溫、結溫變化、雪崩電流密度、雪崩時間和雪崩循環次數)。通常,這些參數偏移不會導致物理器件失效,但顯然特定類型、幅度和方向的參數偏移可能會導致最終應用問題。圖15顯示了在重復雪崩條件下運行的溝槽MOSFET技術器件的參數偏移數據(相較于初始測量結果的變化量)示例。


功率MOSFET的UIS(UIL)特性知多少?

圖14.平面MOSFET結構(左)和屏蔽柵極MOSFET結構(右)的簡化橫截面圖。虛線代表雪崩電流。


功率MOSFET的UIS(UIL)特性知多少?

圖15.溝槽型MOSFET中直流參數偏移作為重復雪崩循環數據的函數


關于功率MOSFET雪崩操作的關鍵點是,沒有明確的方法來確定功率MOSFET重復雪崩能力的額定值。數據表上的任何重復雪崩額定值都應基于操作條件假設,并定義確定功能能力限制的方法(例如,達到某些直流參數百分比變化所需的循環次數)。


作為一般設計規則,應避免重復雪崩操作,這是首選的電路設計操作。當然,這不可能總是被實踐;正如本應用筆記前面提到的,現實世界中需要MOSFET按照設計發生重復雪崩的應用。在這些情況下,為確定MOSFET對重復雪崩操作的適用性,最好使用應用操作條件根據實證分析進行評估。


UIS (UIL)是MOSFET雪崩操作的一種具體形式,由非鉗位電感負載的關斷引起。功率MOSFET的設計和制造使UIS雪崩操作僅受器件熱能力或最大峰值雪崩電流密度的限制。Ipk與tav SOA的函數關系圖是展示功率MOSFET UIS能力的最佳方式。除非已知并理解測試操作條件(Ipk、Vav、L、tav和Tj(initial)),否則不應在器件之間比較單個UIS能量額定值。具有相同或相似雪崩電壓功能和相同或相似熱能力的器件將具有相同的UIS失效能力,但Ipk vs tav SOA圖的降額因子可能因使用的行業而異。安全的重復雪崩操作是有可能實現的,但根據操作條件可能會發生DC參數偏移。

本文轉載自:安森美


免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


推薦閱讀:

優化大功率直流充電樁設計

海康威視在西安城墻,以智能物聯守護國寶級文物

如何針對工業應用改造螺線管和步進電機驅動器

發光二極管中的電阻器

下一代隔離式Σ-Δ調制器如何改進系統級電流測量


特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索

關閉

?

關閉

欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡
国产一区视频网站| 国产成人免费视频一区| 亚洲少妇屁股交4| 2023国产精品视频| 日韩欧美精品在线视频| 欧美丰满高潮xxxx喷水动漫| 欧美无砖专区一中文字| 在线观看欧美日本| 欧美在线观看视频在线| 欧美视频一区在线观看| 欧美性色黄大片| 欧美日韩国产精品自在自线| 欧美日韩精品欧美日韩精品一 | 7777女厕盗摄久久久| 欧美日韩亚洲综合在线| 欧美日韩高清一区| 88在线观看91蜜桃国自产| 91精品一区二区三区久久久久久| 欧美日韩dvd在线观看| 91精选在线观看| 精品国产1区2区3区| 久久久久久久电影| 国产精品私房写真福利视频| 一色屋精品亚洲香蕉网站| 亚洲精选免费视频| 一区av在线播放| 日韩不卡一二三区| 美女在线一区二区| 国产成人aaa| 成人高清免费观看| 日本sm残虐另类| 精品国产免费一区二区三区四区| 欧美一区二区三级| 久久久噜噜噜久久中文字幕色伊伊| 精品盗摄一区二区三区| 国产精品无人区| 一区二区三区资源| 免费高清不卡av| 国产91在线观看| 欧美午夜片在线看| 日韩美女在线视频| 中文字幕巨乱亚洲| 亚洲国产精品影院| 久久国产夜色精品鲁鲁99| 成人国产精品免费观看动漫| 91福利国产精品| 精品理论电影在线观看| 亚洲色欲色欲www在线观看| 男人的j进女人的j一区| 成人福利在线看| 777亚洲妇女| 国产精品久久一级| 日本va欧美va精品| 91麻豆123| 日韩免费观看高清完整版在线观看| 国产精品久久久久久久久果冻传媒| 亚洲超丰满肉感bbw| 国产精品一区二区三区乱码| 色综合久久久久综合体桃花网| 91精品国产91久久久久久最新毛片| 国产精品免费视频观看| 秋霞午夜av一区二区三区| 成人成人成人在线视频| 日韩一区二区免费电影| 亚洲视频中文字幕| 国产精品一区二区免费不卡 | 精品国产99国产精品| 一区二区在线观看免费视频播放| 麻豆国产精品一区二区三区| 色综合久久久久综合99| 2023国产精品视频| 日韩综合在线视频| 91麻豆高清视频| 国产午夜亚洲精品理论片色戒 | 国产成人在线色| 欧美精品vⅰdeose4hd| 中文在线一区二区| 久久99久久99精品免视看婷婷| 色av成人天堂桃色av| 日本一二三不卡| 久久国产三级精品| 884aa四虎影成人精品一区| 一区二区三区在线观看欧美| 风间由美中文字幕在线看视频国产欧美 | 岛国一区二区三区| 欧美成人高清电影在线| 午夜视频在线观看一区二区| 97超碰欧美中文字幕| 欧美激情中文不卡| 老司机免费视频一区二区| 91在线视频网址| 国产日韩欧美综合在线| 久久成人免费网站| 日韩欧美另类在线| 免费观看在线综合| 欧美日韩成人一区| 亚洲一二三四区不卡| 91美女精品福利| 国产精品家庭影院| 成人精品鲁一区一区二区| 久久久精品国产免大香伊| 国内精品国产成人| 欧美变态口味重另类| 久久成人免费网站| 精品免费视频.| 精品一区二区三区影院在线午夜 | 久久精品视频在线看| 韩国一区二区在线观看| 2023国产精品| 国产xxx精品视频大全| 日本一区二区三区久久久久久久久不 | 丁香婷婷综合激情五月色| 精品国产免费一区二区三区香蕉| 美女mm1313爽爽久久久蜜臀| 日韩欧美国产一二三区| 日韩二区三区在线观看| 5月丁香婷婷综合| 美女mm1313爽爽久久久蜜臀| 欧美本精品男人aⅴ天堂| 久久99国产精品麻豆| 久久久久久麻豆| 成人黄色777网| 亚洲午夜私人影院| 69成人精品免费视频| 蜜臀av性久久久久蜜臀aⅴ流畅| 日韩精品一区二区三区视频在线观看| 美女视频第一区二区三区免费观看网站| 欧美一区二区女人| 国内精品视频一区二区三区八戒| 国产网站一区二区三区| 91女厕偷拍女厕偷拍高清| 亚洲一区免费观看| 欧美一二三四在线| 国产成人午夜视频| 自拍偷在线精品自拍偷无码专区| 在线观看日韩电影| 国产综合色在线视频区| 亚洲欧美偷拍卡通变态| 欧美精品久久久久久久多人混战 | 91天堂素人约啪| 天天影视涩香欲综合网| 久久综合久久99| 色久综合一二码| 久久精品久久99精品久久| 国产精品动漫网站| 91精品国产综合久久香蕉的特点| 国产精品一区二区三区网站| 亚洲综合色自拍一区| 精品国产一区二区三区久久久蜜月| 岛国av在线一区| 日韩av一区二区三区四区| 欧美激情自拍偷拍| 亚洲成人av中文| 欧美日韩国产在线观看| 国产在线一区观看| 亚洲在线视频免费观看| 精品va天堂亚洲国产| 91福利区一区二区三区| 国产一区二区三区日韩| 亚洲欧美日韩中文字幕一区二区三区| 91精品国产综合久久久久| 99久久精品费精品国产一区二区| 亚洲第一成人在线| 国产精品视频一区二区三区不卡| 欧美日韩国产一区| jlzzjlzz亚洲女人18| 久久黄色级2电影| 亚洲一区二区三区视频在线播放| www日韩大片| 7777精品伊人久久久大香线蕉的 | 日日摸夜夜添夜夜添国产精品| 中文字幕精品综合| 精品播放一区二区| 在线不卡中文字幕| 色菇凉天天综合网| eeuss鲁片一区二区三区在线观看| 另类人妖一区二区av| 亚洲第一二三四区| 一区二区三区四区高清精品免费观看| 久久欧美一区二区| 日韩视频免费观看高清完整版| 欧洲精品一区二区| 91香蕉视频mp4| 成人免费毛片a| 久久精品国产免费看久久精品| 亚洲第一电影网| 亚洲第一在线综合网站| 亚洲三级小视频| 国产精品天干天干在观线| 久久婷婷久久一区二区三区| 日韩午夜激情免费电影| 制服丝袜一区二区三区| 欧美视频在线播放| 欧美三区在线观看| 欧美性大战久久| 91国产丝袜在线播放| 色婷婷av久久久久久久| 91视频在线看| 色悠悠亚洲一区二区| 色系网站成人免费|