欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡

你的位置:首頁 > 互連技術 > 正文

在通信系統應用中使用抖動改進 ADC SFDR

發布時間:2023-06-08 責任編輯:lina

【導讀】我們討論了如何使用抖動來通過打破量化誤差和輸入信號之間的統計相關性來提高理想量化器的性能。所謂理想,是指 ADC 傳遞函數具有統一的階躍。換句話說,理想的 ADC 具有零 DNL 誤差。這種抖動應用在需要高SFDR 的無線電接收器中尤為重要。


我們討論了如何使用抖動來通過打破量化誤差和輸入信號之間的統計相關性來提高理想量化器的性能。所謂理想,是指 ADC 傳遞函數具有統一的階躍。換句話說,理想的 ADC 具有零 DNL 誤差。這種抖動應用在需要高SFDR 的無線電接收器中尤為重要。

在本文中,我們將討論抖動的另一個重要應用,即改進真實世界 A/D 轉換器的 SFDR,例如 AD6645,它會出現 DNL 錯誤。這種抖動應用在當今需要高 SFDR 的無線電接收器中尤為重要。
 
ADC 靜態和動態線性度

在開始之前,讓我們首先快速回顧一下提高 ADC 線性度的主要限制。盡管 ADC 使用不同的架構和電路實現,但它們有兩個主要的非線性源:采樣保持 (S/H) 電路和 ADC 的編碼器部分。S/H 非線性部分源于這樣一個事實,即它具有有限的轉換速率,并且當輸入是具有大振幅的高頻信號時,可能無法足夠快地跟隨輸入。缺乏表現出足夠轉換率的 S/H 是許多 ADC 無法提供高于幾兆赫信號帶寬的高 SFDR 的一個關鍵原因。這也解釋了為什么 S/H 的非線性與頻率有關。S/H 在確定 ADC 的動態(或 AC)線性度方面起著關鍵作用。

另一個非線性源是 ADC 編碼器部分。對于給定的 ADC 相位,編碼器部分主要處理直流信號,因為它位于 S/H 之后。因此,編碼器非線性會導致系統的靜態(或直流)非線性。理想情況下,非線性成分不會隨頻率變化。靜態非線性的特征在于ADC 傳遞函數中的DNL 和INL(積分非線性)誤差。術語“靜態非線性”可能用詞不當,因為這種非線性成分不僅影響直流信號,而且在處理交流信號時還會降低線性度。
 
請注意哪種非線性類型占主導地位!

本文要記住的另一件重要事情是,對于許多 ADC,S/H 是非線性的主要。在這種情況下,諧波失真性能會隨著輸入接近奈奎斯特頻率而迅速下降。如果 S/H 是限制因素,則無法通過外部方式顯著改善 ADC 線性度。但是,某些 ADC 專門設計有寬帶、高線性度的前端。這使得編碼器部分成為非線性的主要。對于此類 ADC,我們可以使用抖動技術來改善 ADC SFDR。在研究這種抖動應用之前,讓我們仔細看看 ADC 靜態傳遞函數引入的非線性誤差。
 
傳遞函數非線性——確定性誤差

為了更好地理解靜態非線性,我們將以圖 1 所示的傳遞函數引入的非線性誤差為例進行研究。


在通信系統應用中使用抖動改進 ADC SFDR
圖 1. 引入非線性誤差的傳遞函數示例 [點擊圖片放大]。


上圖中的紅色曲線表示非線性 4 位 ADC,而藍色曲線表示理想的 4 位響應。如果我們使用上述特性曲線將以 4 MHz 采樣的 1.11 kHz 正弦波數字化,我們將獲得圖 2 中的以下波形。


在通信系統應用中使用抖動改進 ADC SFDR

圖 2.以 4 MHz 采樣的數字化 1.11 kHz 正弦波的波形 [單擊圖像放大]。


在圖 2 中,綠色曲線顯示輸入,而藍色和紅色曲線分別是理想和非線性傳遞函數的輸出。通過從紅色曲線中減去藍色曲線,我們可以確定非理想響應引入的非線性誤差。這由圖 3 中的紅色曲線顯示。


在通信系統應用中使用抖動改進 ADC SFDR
圖 3. 顯示非理想響應引入的非線性誤差的圖 [單擊圖像放大]。 


傳遞函數非線性引入的誤差是確定性誤差。這意味著,對于給定的輸入電壓,誤差始終相同。例如,參考圖 1,我們觀察到 6 LSB(有效位)的輸入總是導致比理想值高 3 LSB 的輸出。這種確定性行為在輸入和錯誤之間建立了相關性。如果輸入處于特定頻率,我們預計誤差在與輸入相關的某些特定頻率處具有很強的頻率分量。

圖 3 可以幫助您更好地理解這種情況。在這種情況下,誤差波形不完全是周期性的;但是,錯誤的整體形狀似乎會以規律的方式重復出現。即,輸入信號在一個周期內有兩次重復。這表明誤差在輸入的二次諧波處具有很強的分量。為了更好地形象化這一點,該圖還繪制了 2.22 kHz(二次諧波)的正弦波。如您所見,正弦波近似于誤差波形整體形狀的趨勢。

對非線性響應輸出進行快速傅里葉變換 (FFT),我們得到圖 4 中的頻譜,其中僅顯示 DC 至 50 kHz 范圍。


在通信系統應用中使用抖動改進 ADC SFDR
圖 4. 顯示從 DC 到 50 kHz 范圍內的非線性響應輸出的繪圖 [單擊圖像放大]。 


FFT 結果證實二次諧波是非線性響應的主要頻率分量。值得一提的是,主要諧波分量的頻率取決于 ADC 的 INL 形狀。對于圖 1 所示的非線性(有時稱為弓形 INL),二次諧波是主要諧波。對于 S 形 INL,三次諧波是誤差的主要頻率分量。有關 INL 形狀對 D/A 轉換器(DAC 或數模轉換器)頻譜的影響的討論,請參閱本文。
 
打破 ADC 誤差與輸入之間的相關性

如果我們向輸入添加一個相對較大的隨機信號,使 ADC 的整體輸入以不可預測的方式在ADC 傳遞函數的不同階躍之間變化,我們可以在一定程度上減少確定性失真。這個概念如圖 5 所示。


在通信系統應用中使用抖動改進 ADC SFDR


圖 5. 顯示 ADC 傳遞函數階躍期間 ADC 輸入變化的基本圖。圖片由Analog Devices提供


添加隨機信號(或抖動信號)后,給定的輸入并不總是轉換為相同的輸出電平。因此,即使輸入不變,誤差也會隨時間變化。例如,考慮將 6 LSB 的輸入應用于圖 1 中的傳遞函數。如果沒有抖動,誤差始終為 3 LSB。現在考慮抖動的情況。假設抖動信號偶爾等于 2 LSB。在 2 LSB 處,非線性誤差變為零。由于誤差在 0 和 3 LSB 之間變化,因此與未抖動情況相比,誤差平均值有所降低。這個簡單的例子展示了抖動如何消除輸入和非線性誤差之間的相關性,從而減少確定性失真。抖動通過使轉換器的 DNL 誤差離域或隨機化來實現這一點。
 
通信系統抖動技術

抖動技術在通信系統中特別有用。對于許多通信應用,輸入可以是遠低于 ADC 滿量程的小信號。這個小信號使用相對少量的 ADC 代碼。如果這些代碼表現出較大的 DNL 誤差,則輸出將包含顯著的諧波失真。
請注意,對于滿量程(或大)信號,DNL 誤差在某種程度上是固有平均的。原因是大信號會執行 ADC 的所有代碼。因此,當信號幅度降至低于滿量程值 20 dB 時,具有 88 dBFS 滿量程 SFDR 的 ADC 可能僅提供 80 dBFS 的 SFDR。在這種情況下,抖動技術可能有助于我們在低信號水平下保持 ADC 的 SFDR 性能。應該注意的是,由于輸入電平很小,我們可以將抖動信號添加到輸入而不會過度驅動 ADC。
 
ADC 噪聲——我們不是在丟失信息嗎?

你可能會問:我們在輸入信號中加入比較大的噪聲不是丟失了信息嗎?答案是信息似乎在時域中丟失了。然而,通過適當選擇噪聲信號以及信號處理技術,我們可以重建原始信息。一種解決方案是減色抖動。在這種情況下,將圖 5 中的基本圖修改為下圖(圖 6)。


在通信系統應用中使用抖動改進 ADC SFDR
圖 6.減法抖動圖。圖片由Analog Devices提供


在減法方法中,引入輸入的噪聲以相反的極性添加到輸出,從而將系統輸出端的凈抖動噪聲歸零。在通信系統中使用的另一種有趣的技術是使用頻率成分在所需信號帶寬之外的窄帶噪聲。幾百 kHz 的小帶寬對于抖動信號通常就足夠了。帶外噪聲的兩個可能位置是直流附近或略低于奈奎斯特頻率(f s /2,其中 f s 是采樣頻率)。在可用于抖動目的的大多數通信系統中不使用這兩個頻率區之一。在這種情況下,可以很容易地在輸出端濾除抖動。
 
玩我們假設的 ADC

讓我們使用圖 1 中的傳遞函數來研究這種技術。為此,我們向該 ADC 應用幅度為 2 LSB 和 DC 值為 7.5 LSB 的 1.11 kHz 正弦波。這樣的輸入會執行 ADC 的中檔代碼。從略高于 0 Hz 到 30 kHz 范圍的輸出頻譜如圖 7 所示。


在通信系統應用中使用抖動改進 ADC SFDR
圖 7.  1.11 kHz 正弦波的另一個示例圖,其頻譜范圍略高于 0 Hz 至 30 kHz [單擊圖像放大]。 


對于這個特定的輸入,有幾個不同的諧波分量,但主要的仍然是二次諧波。將值轉換為分貝,我們發現 SFDR 為 17.47 dBc。為了產生抖動信號,我們可以使用 Matlab 的“randn”函數來產生具有 2 LSB RMS(均方根)的寬帶高斯噪聲。應用以 1.94 MHz 為中心的通帶為 100 kHz 的帶通濾波器,寬帶噪聲被轉換為略低于 f s /2的窄帶抖動。抖動信號的頻譜如下圖 8 所示。


在通信系統應用中使用抖動改進 ADC SFDR
圖 8. 抖動信號的示例頻譜 [單擊圖像放大]。


由于抖動信號是原始噪聲的帶限版本,我們可以使用以下等式來確定抖動信號的方差:
 
V a r i a n c e o of D i t h e r = F i l t e r B and w i d w i d t h f s / 2   × No i s e方差_ _ _ _ _ _ _ _ Variance of Dither=Filter Bandwidthfs/2×Noise Variance
 
代入數字,我們得到:
 
Va r i a n c e of D i t h e r = 100 k H z 2 M H z _ _× 4 = 0.2Variance of Dither=100 kHz2 MHz×4=0.2
 
取該值的平方根,抖動信號的 RMS 為 0.45 LSB。抖動的峰峰值可以估計為 6.60.45 = 2.97 LSB(RMS 高斯噪聲乘以 6.6 轉換為峰峰值)。請注意,抖動的峰峰值足夠小,不會過度驅動 ADC。應用抖動后,我們獲得以下輸出頻譜(圖 9)。


在通信系統應用中使用抖動改進 ADC SFDR


圖 9. 應用抖動 RMS 后的輸出頻譜 [單擊圖像放大]。


可以看出,諧波被顯著抑制。將值轉換為分貝,我們獲得 27.9 dBc 的 SFDR,與未抖動情況相比提高了 10.43 dB。抖動通過將信號雜散散布到本底噪聲中來抑制諧波分量。
 
真實世界 ADC 的測試結果——ADC3424

下面的圖 10 顯示了ADC3424 對于 70 MHz 輸入的輸出頻譜。


在通信系統應用中使用抖動改進 ADC SFDR
圖 10.  70 MHz 輸入時 ADC3424 的輸出頻譜。圖片由德州儀器提供


ADC3424 提供抖動功能作為內部特性。關閉內部抖動后,SFDR 為 91 dBc。然而,隨著內部抖動被激活,雜散擴散到本底噪聲中,并且 SFDR 增加到 99 dBc。
 
抖動技術限制

可顯著改善 ADC SFDR 的適當抖動級別取決于特定 ADC 的架構和其他屬性。SFDR 的改善還取決于輸入信號的幅度以及抖動的幅度。還應注意,超過一定的噪聲水平,SFDR 可能不會顯著改善。 以Analog Devices 的AD6645為例。該設備使用多級架構。對于這種類型的 ADC 架構,DNL 誤差具有重復模式,并且當輸入掃過 ADC 輸入范圍時,DNL 圖中有一些尖峰。下面的圖 11 顯示了 AD6645 在其一小部分輸入范圍內的 DNL 圖。


在通信系統應用中使用抖動改進 ADC SFDR

圖 11.  AD6645 在其一小部分輸入范圍內的 DNL 圖。圖片由Analog Devices提供


對于 AD6645,尖峰每 512 個 LSB 出現。經實驗發現適合此特定 ADC 的抖動電平為 1024 LSB 峰峰值或 155 LSB RMS。應用更大的抖動不會顯著改善 AD6645 的 SFDR。對于這個 ADC,抖動的峰峰值等于兩個 DNL 尖峰之間代碼距離的兩倍。但是,我們不能斷定這是所有多級 ADC 的一般規則。


免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


推薦閱讀:

確定電容器的等效串聯電阻 (ESR)

在汽車發展新趨勢中確保功能安全對車載網絡的意義

LED驅動器中I2C的LED控制方式

使用多層感知器進行機器學習

霍爾效應位置感測:滑動配置的響應線性度和斜率


特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索

關閉

?

關閉

欧美日韩亚州综合,国产一区二区三区影视,欧美三级三级三级爽爽爽,久久中文字幕av一区二区不卡
国产三区在线成人av| 亚洲美女免费视频| 久久国产精品色| 777久久久精品| 午夜视频在线观看一区| 欧美日韩国产a| 免费成人在线观看视频| 欧美videossexotv100| 亚洲电影一级片| 久久综合精品国产一区二区三区| 日韩影院精彩在线| 久久久另类综合| 99re热视频精品| 一区二区在线看| 91精品国产欧美一区二区| 青青草国产精品97视觉盛宴| 精品伦理精品一区| 国产一区二区三区国产| 国产精品久线观看视频| 欧美久久久久中文字幕| 日韩在线播放一区二区| 国产欧美一区二区三区网站| 色婷婷久久久久swag精品| 日产欧产美韩系列久久99| 久久久久国产一区二区三区四区| 成人动漫在线一区| 麻豆成人久久精品二区三区小说| 久久久久国产精品麻豆ai换脸 | 久久电影网站中文字幕 | 中文字幕欧美三区| 成人av第一页| 国产成人在线观看免费网站| 美女一区二区久久| 香蕉久久一区二区不卡无毒影院 | 91免费版在线| 懂色av一区二区三区免费看| 亚洲伊人色欲综合网| 亚洲少妇30p| 国产精品全国免费观看高清| 久久嫩草精品久久久精品一| 精品国产乱码久久久久久图片| 日韩午夜电影在线观看| 3d动漫精品啪啪| 欧美一卡2卡三卡4卡5免费| 欧美在线免费视屏| 日本丰满少妇一区二区三区| 91在线观看下载| 欧美私人免费视频| 欧美色综合网站| 日韩欧美二区三区| 久久精品一区二区三区不卡牛牛| 欧美成人一区二区| 国产日韩欧美精品在线| 中文字幕一区二区在线观看| 国产精品免费人成网站| 亚洲成人av一区二区| 亚洲欧美日本在线| 日韩国产精品久久| av成人免费在线| 日韩欧美综合在线| 亚洲丝袜精品丝袜在线| 日本在线不卡视频| 91亚洲国产成人精品一区二区三| 精品欧美乱码久久久久久1区2区| 久久亚洲一区二区三区四区| 一区二区三区中文字幕精品精品| 最新热久久免费视频| 日韩毛片视频在线看| 日本aⅴ精品一区二区三区 | 亚洲免费在线观看| 国产91精品入口| 欧美一个色资源| 亚洲综合色在线| 色婷婷av一区二区三区软件| 国产精品美女久久福利网站| 国产一区二区三区四区在线观看| 日韩一区二区三区免费看| 亚洲黄色免费电影| 欧美亚一区二区| 一二三四社区欧美黄| 欧美系列亚洲系列| 蜜臀av性久久久久av蜜臀妖精| 成人午夜激情影院| 成人午夜在线免费| 欧美日韩视频在线第一区| 久久综合色一综合色88| 亚洲午夜在线观看视频在线| 日本道色综合久久| 丝袜美腿一区二区三区| 欧美系列亚洲系列| 日韩不卡一二三区| 欧美xingq一区二区| 成人黄色小视频在线观看| 夜夜亚洲天天久久| 欧美精品视频www在线观看 | 亚洲精品你懂的| 欧美一卡二卡三卡| www.欧美.com| 极品尤物av久久免费看| 国产精品久久二区二区| 欧美日韩一区二区三区在线看| 性做久久久久久久久| 欧美激情一区二区三区在线| 色偷偷成人一区二区三区91| 狠狠色综合色综合网络| 国产精品久久久久久久久快鸭| 色噜噜狠狠色综合中国| 免费观看一级特黄欧美大片| 国产色一区二区| 26uuu欧美| 久久五月婷婷丁香社区| 91精品午夜视频| 一本在线高清不卡dvd| 国产91精品入口| 国产91综合一区在线观看| 美国精品在线观看| 免费成人av在线播放| 亚洲成人777| 五月婷婷久久综合| 一区二区三区91| 天天影视色香欲综合网老头| 伊人婷婷欧美激情| 国产性天天综合网| 国产网站一区二区三区| 在线播放日韩导航| 日韩一区二区三区免费观看| 欧美亚洲免费在线一区| 欧美天堂亚洲电影院在线播放| 欧美日韩精品一区视频| 欧美日韩精品欧美日韩精品一| 欧美在线短视频| 精品国产乱码久久久久久影片| 国产欧美综合在线观看第十页| 国产亚洲欧美日韩在线一区| 国产精品成人一区二区艾草| 午夜私人影院久久久久| 粉嫩av一区二区三区在线播放| 粗大黑人巨茎大战欧美成人| av网站一区二区三区| 欧美三级视频在线观看| 欧美成人伊人久久综合网| 亚洲天堂中文字幕| 欧美a级一区二区| av电影在线观看完整版一区二区| 99国产精品国产精品毛片| 精品成人在线观看| 亚洲成人午夜电影| 高清不卡一二三区| 在线免费观看日本一区| 2017欧美狠狠色| 亚洲在线成人精品| 一本色道久久综合亚洲91| 精品日韩欧美在线| 亚洲国产精品自拍| 99久久久精品免费观看国产蜜| 欧美成人国产一区二区| 美国十次综合导航| 在线视频中文字幕一区二区| 国产亚洲女人久久久久毛片| 亚洲一区二区三区激情| 日韩1区2区日韩1区2区| 在线免费不卡视频| 日本女人一区二区三区| 欧美性大战久久久久久久蜜臀| 欧美日韩精品免费| 国产欧美一区视频| 国产成人在线观看免费网站| 久久精品视频在线免费观看| 日本不卡的三区四区五区| 在线观看av一区二区| 国产精品久久久久久户外露出 | 欧美综合色免费| 国产午夜亚洲精品羞羞网站| 国精产品一区一区三区mba桃花| 国产麻豆91精品| 欧美极品aⅴ影院| 欧美日韩在线播| 亚洲最大成人网4388xx| 欧美在线免费观看视频| 亚洲柠檬福利资源导航| 欧美日韩精品综合在线| 日韩专区一卡二卡| 欧美不卡一区二区三区四区| 国产精品一区二区91| 26uuu久久天堂性欧美| 狠狠色2019综合网| 欧美成人a视频| 99久久婷婷国产精品综合| 国产一区二区导航在线播放| 欧美—级在线免费片| 色综合久久久久网| 免费看精品久久片| 青娱乐精品在线视频| 亚洲午夜免费电影| 精品国免费一区二区三区| 欧美日本韩国一区二区三区视频| 成人av网站在线观看免费| 美女网站在线免费欧美精品| 亚洲国产另类av| 国产精品美女久久久久久久网站|